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ABSTRACT This article proposes a synchronization technique for uncertain hyperchaotic systems in the
modified function projective manner using integral fast terminal sliding mode (I-FTSM) and adaptive
second-order sliding mode algorithm. The new I-FTSM manifolds are introduced with the aim of having
the fast convergence speed. The proposed continuous controller not only results in the robustness and
high-accuracy synchronization in the presence of unknown external disturbances and/or model uncertainties
but also helps alleviating the chattering effect significantly. Numerical simulation results are provided to
illustrate the effectiveness of the proposed control design technique and verify the theoretical analysis.

INDEX TERMS Hyperchaotic synchronization, terminal sliding mode control, uncertainty, finite-time
control.

I. INTRODUCTION
Synchronization of chaotic or hyperchaotic systems (HPSs)
has attracted enormous research efforts from the control com-
munity as the recent reports have shown the potential in many
areas such as secure communications, image encryption,
information processing, diagnosis and identification, power
converters, chemical reaction and biological systems [1]–[6].
In recent years, the modified function projective synchro-
nization (MFPS) problem has gained a particular attention
as it helps to address a more general type of synchronization
[7]. Specifically, the MFPS is well-suited to secure commu-
nication and image encryption since the MFPS means that
the states of the slave system are driven to follow those of
the master system up to nonlinear smooth scaling functions
that seem to be difficult to be predicted, thus substantially
improving the signal encryption [4]–[6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyang Fei .

To achieve the MFPS, some control methods have
been reported such as the Open-Plus-Closed-Loop coupling
method [8], linear dynamic coupling [9], and reservoir com-
puting scheme [10]. However, these schemes are not appli-
cable for the HPSs that are perturbed by external distur-
bances and uncertainties (EDaU). Based on the LinearMatrix
Inequality technique and Lyapunov stability theory,Mobayen
and Tchier proposed new nonlinear control methods that
could be extended to perform the MFPS in presence of EDaU
assuming their upper bounds to be known a priori [11], [12].
However, it may not be easy to estimate the upper bounds
of such perturbations. In order to overcome such challenges,
adaptive control-based techniques have been proposed to
obtain the MFPS against unknown perturbations [13]–[17].
Nevertheless, these methods only lead to synchronization
with limited capabilities, i.e., the MFPS errors are either
bounded or converging to zero asymptotically.

Certainly, steering the synchronization error to zero within
a finite time is more desirable, and finite-time MFPS
(FT-MFPS) could be achieved by finite-time control (FTC)
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methods. The fast convergence, high accuracy, robustness,
and disturbance rejection ability are the demonstrated charac-
teristics of the FTC [18]. Therefore, the FTC technique-based
synchronization has been received an increasing attention
in recent years [19]–[25]. Although only few FTC works
are partially considering some sub-classes of MFPS in the
current literature, they can be readily applied to a gen-
eral MFPS problem after relevant modification. In [19],
an adaptive FTC method is proposed to aim at finite-time
synchronization (FTSY) of chaotic systems, where tanh(·)
function was utilized to avoid the chattering effect. Sang-
pet and Kuntanapreeda [20] solved the FTSY problem by
proposing a passivity-based feedback controller. Aghababa
and his colleague in [21] addressed the adaptive FTSY
of the uncertain non-autonomous chaotic system. The
combination-combination synchronization of four different
uncertain chaotic systems in finite time was studied in
[22]. The authors in [23] introduced a new robust adaptive
synchronization approach of hyperchaotic Rossler systems
with unknown parameters based on FTC and back-stepping
control. However, all the aforementioned studies contain
inevitable drawbacks such as the requirement of the upper
bound of uncertainty terms, unknown or estimated param-
eters are known a priori (see [21] and [22]); and the work
in [23] is limited to the specific type of HPSs. Wang et al.
[24] introduced an adaptive FTC for synchronizing uncertain
Lorenz-Stenflo systems; however, their results only ensure
the finite-time stability with special initial conditions related
to the Lyapunov function candidate, which is hardly satisfied.
On the basis of the finite-time stability theory, Zhang et al.
[25] proposed a modified adaptive FTC strategy aimed at
achieving the global FTSY of different dimensional chaotic
systems. However, some of priori-unknown parameters are
required to implement the update laws in Eqs. (14) and (19)
in [25]. Such technical incorrectness was shown by Sun et al.
[26]. In addition, the studies in [20]–[24] were built based on
Lemma 1 in [27], which leads to the slow convergence if the
initial state values are large.

Furthermore, most of the aforementioned control tech-
niques suffered from the chattering effect due to the use of
discontinuous control, sign(·), which can cause the signifi-
cant reduction of the synchronization performance. In order
to deal with this issue, researchers replaced the sign(·)
with some smoothing approximation such as the hyperbolic,
relay, or saturation function. Nevertheless, the robustness and
invariant properties [28] have not been guaranteed, and the
synchronization errors only enter into the neighbor centered
at the origin [29].

Motivated by all the above concerns, the main object of
this article is to develop a new control strategy to achieve the
adaptive FT-MFPS (AFT-MFPS) of HPSs subject to external
disturbance and model uncertainties. The novel contributions
of this work are outlined as follows.

1) New integral fast terminal sliding mode (I-FTSM)
manifolds are introduced to achieve fast convergence
and high accuracy of synchronization;

2) The combination of the new I-FTSM and the adap-
tive second-order sliding mode algorithm (A-SOSMA)
[30] relaxes the requirement of the upper bounds of
unknown EDaU and results in the continuous control
signals which help mitigating the chattering effect;

3) The stability of the closed-loop systems and the
finite-time convergence of synchronization errors are
theoretically proven; and

4) The AFT-MFPS of HPSs is obtained for the first
time, which possess the following remarkable features.
Firstly, while the existing approaches either do not deal
with EDaU [8]–[10] or require the upper bounds of
EDaU (see [11] and [12]), our approach is able to suc-
cessfully synchronize the HPSs against the unknown
external disturbance and uncertainties. Secondly, com-
pared to both classic adaptive control approaches
[13]–[17] and FTC ones [19]–[24] which replace
sign(·) with some smooth approximation that only
make MFPS errors either bounded or enter into the
neighbor centered at the origin, all MFPS errors
is ensured to reach zero in finite time by our
proposed one. Lastly, the faster finite-time conver-
gence is achieved by using the proposed I-FTSM
manifolds instead of applying the existing TSM
manifold [20]–[24].

The rest of this article is organized as follows. Section II
describes the problem formulation and some preliminaries.
Section III shows the main result including the two-step
design procedure. The effectiveness of the proposed scheme
is demonstrated using two illustrative simulation examples,
and further applied to a practical engineering application in
Section IV. Conclusions are given in Section V.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
A. PROBLEM DESCRIPTION
Consider an uncertain HPS that is taken as a master system
of the form

ẋm1 = fm1(xm, t)+ dm1(xm, t),
ẋm2 = fm2(xm, t)+ dm2(xm, t),
. . .

ẋmn = fmn(xm, t)+ dmn(xm, t),

(1)

where xm = [xm1, xm2, . . . , xmn]T is the state vec-
tor, fmi(xm, t) represent known nonlinear functions, and
dmi(xm, t), (i = 1, 2, . . . , n) denote EDaU. The second
uncertain (HPS) considered as a slave system is given by

ẋs1 = fs1(xs, t)+ ds1(xs, t)+ u1(t),
ẋs2 = fs2(xs, t)+ ds2(xs, t)+ u2(t),
. . .

ẋsn = fsn(xs, t)+ dsn(xs, t)+ un(t),

(2)

where xs = [xs1, xs2, . . . , xsn]T is the state vector. Similar
to the master system, the functions fsi(xs, t) are assumed to
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be known, dsi(xs, t), are EDaU, and ui(t) denote the control
signals.
Remark 1: The differential equation (1) is the gen-

eral expression of various reported HPSs including the
four-dimensional (4D) HPSs such as the Chen HPS and
Lorenz HPS (see, e.g. [5], [31]–[35]) and five-dimensional
(5D) HPSs [20], [36].

Based on the work of Fu [17], let us define the MFPS
error (MFPSE) between (1) and (2) as

ei(t) = λiη(t)xsi(t)− xmi(t), (3)

where λi are constants and η(t) does not vanish at zero and is a
continuously differentiable and bounded function. Therefore,
the differential equation of the MFPSE dynamics raised from
(1), (2), and (3) can be expressed as

ėi(t) = λiη̇(t)xsi − fmi(xm, t)+ λiη(t)fsi(xs, t)

−dmi(xm, t)+ λiη(t)dsi(xs, t)+ λiη(t)ui(t). (4)

In this article, the following assumption is required for the
subsequent development (see [37] and [38]).
Assumption 1: It is assumed that the uncertain terms

dei (xm, xs, t) = −dmi(xm, t) + λiη(t)dsi(xs, t) are Lipschitz
continuous functions, i.e.,

−kei ≤
d
dt
dei (xm, xs, t) ≤ kei ,

where kei ,∀i ∈ {1, 2, · · · , n} are unknown positive constants.
Remark 2: It is not difficult to see that the considered

MFPS will become the anti-synchronization (AS), the com-
plete synchronization (CS), the projective synchronization
(PS), the function PS (FPS), and themodified PS (MPS)when
λiη(t) have appropriate values, which are shown in Table 1 in
detail.

TABLE 1. The synchronization types.

Let us denote theMFPSE vector by e(t) = [e1(t), e2(t), . . . ,
en(t)]T , and the FT-MFPS is defined as follows.
Definition 1: The FT-MFPS of the master system (1) and

the slave system (2) is said to be achieved if there exists a
non-negative constant T depending on the initial conditions
e(0) such that e(t) goes to zero as t → T and remains at zero
after the instance time T .
In view of Definition 1 in the connection with Definition 2

in the next subsection, our task is to suitably choose control
signals ui(t) to ensure the global stability of the MFPSE
dynamics (4) and to steer the MFPSE vector e(t) from any
initial state to the origin in finite time.

B. PRELIMINARIES
This section provides a set of definition and Lemma which
will be used during the design procedure.
Definition 2 [44]: Consider the system

ż = ψ(t, z), z0 = z(0), (5)

where z ∈ Rn andψ : R+×Rn
→ Rn, and assume the origin

is the equilibrium of (5). The solutions of (5) are understood
in the sense of Filippov. The origin of (5) is said to be globally
finite-time stable if it is globally asymptotically stable and
any solution z(t, z0) of (5) reaches the equilibria at some finite
time moment, i.e., z(t, z0) = 0,∀t ≥ T (z0),where T : Rn

→

R+ ∪ {0} is the settling time function.
The A-SOSMA in the following Lemma is adapted from

the work of Laghrouche et al. [30] that is inspired by the
well-known super-twisting algorithm [45].
Lemma 1: Consider the system{

ζ̇1 = −a(t) bζ1e1/2 − ka(t)ζ1 + ζ2,
ζ̇2 = −b(t) bζ1e0 − kb(t)ζ1 + ρ(t).

(6)

Suppose that there exists some unknown non-negative con-
stant kρ such that the perturbation |ρ(t)| ≤ kρ . If we define
the time-varying parameters as

a(t) = a0
√
00(t), b(t) = b000(t),

ka(t) = ka000(t), kb(t) = kb00
2
0(t), (7)

with the update law

0̇0(t) =

{
k00 , if |ζ1| 6= 0
0, else,

(8)

where a0, b0, ka0 , kb0 , and k00 are designed positive parame-
ters satisfying the following condition

4b0kb0 > 8b0k2a0 + 9a20k
2
a0 . (9)

The state trajectories of (6) tend to zero in finite time.
Throughout this article, we use the notation bxeγ =
|x|γ sign(x), where γ ≥ 0 (see [46]). For a brief expression,
let dei , ei and ui denote dei (xm, xs, t), ei(t) and ui(t), respec-
tively, unless explicitly expressed.

III. MAIN RESULTS
The whole structure of the AFT-MFPS control strategy is
shown in Fig. 1. The detailed description of two-step design
procedure of the proposed synchronizing control strategy is
given in this section. First, we introduce appropriate I-FTSM
manifolds that exhibit the desirable dynamic behavior when
the sliding motion takes place. Second, the control action is
established to exhibit the sliding motion in finite time and
maintain such a motion.

A. DESIGN OF I-FTSM MANIFOLDS
For the MFPSE system (4), the novel I-FTSM manifolds are
proposed as

σi = ei − ei(0)+
∫ t

0

(
c1ieχi|ei|ei + c2i beieγi

)
dτ, (10)
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FIGURE 1. Block diagram of the proposed AFT-MFPS strategy (3 = diag(λ1, λ2, . . . , λn)).

where c1i, c2i, and χi are positive constants, 0 < γi < 1, and
e is Euler’s number.
Remark 3: The term c1ieχi|ei|ei helps increasing the con-

vergence rate in the sense of self-tuning gain when the
MFPSE |ei| is much bigger than 1; beieγi holds the crucial
role in the period of the finite-time convergence when ei is
closed to zero.

From the sliding mode control theory [47], the presence of
appropriate sliding motion yields

σi = 0 and σ̇i = 0, (11)

and it follows that

ėi = −c1ieχi|ei|ei − c2i beieγi , (12)

which is known as the sliding mode dynamics.
Theorem 1: The zero solutions of (12) are globally

finite-time stable and the state trajectories of the system (12)
reach zero at most after Tei given by

Tei = Tσi +
1

c1i(1− γi)
ln
(
c1i
c2i
|ei0|1−γi + 1

)
, (13)

where Tσi is the instance time when the sliding mode motions
take place.

Proof: Let the function V1 = 1
2e

2
i be a candidate

Lyapunov function for (12). Taking the total derivative along
the system trajectories yields

V̇1 = eiėi

= ei
(
−c1ieχi|ei|ei − c2i beieγi

)
= −c1ieχi|ei|e2i − c2i|ei|

γi+1

≤ −2c1iV1 − 2
γi+1
2 c2iV

γi+1
2

1 . (14)

Hence, V̇1 is a negative definite function, which implies that
ei = 0 is globally asymptotically stable.
In view of Definition 2, the last step for completing the

proof of Theorem 1 is that all trajectories of (12) should be

ensured to reach zero at some amount of finite time. Consider
the nonlinear system described by the differential equation

ξ̇ = −λ1ξ − λ2ξ
ν, ξ0 = ξ (t0) ≥ 0, (15)

where t0 is the initial time, λ1 and λ2 are positive values, and
0 < ν < 1. Since V1 is positive definite, it is sufficient to
solve for (15) based upon the assumption ξ ∈ R+ ∪ {0}.

We can write the differential equation (15) as

dξ
λ1ξ + λ2ξ ν

= −dt, (16)

then

1
λ1(1− ν)

d
(
λ1ξ

1−ν
+ λ2

)
λ1ξ1−ν + λ2

= −dt. (17)

Integrating both sides of the above equation yields the solu-
tion of (15) in the form of

ξ (t, ξ0)

=



(
λ1ξ

1−ν
0 + λ2

)
e−λ1(1−ν)(t−t0) − λ2

λ1


1

1−ν

, t≤Tξ ,

0, t>Tξ ,
(18)

where Tξ = t0+ 1
λ1(1−ν)

ln
(
λ1ξ

1−ν
+λ2

λ2

)
. This settling time is

similar to the result in Remark 2 in [29].
Now, inspired by the proof of Theorem 2 in [45], by invok-

ing the comparison principle [48], it can be shown that V1 ≤
ξ (t, ξ0) when V1(ei0) ≤ ξ0, where ei0 = ei(t = t0). It follows,
from (14) and (18), that ei(t) go to zero at most after a finite
time satisfying

Tei = Tσi +
1

c1i(1− γi)
ln
(
2

1−γi
2
c1i
c2i
V1(ei0)

1−γi
2 + 1

)
= Tσi +

1
c1i(1− γi)

ln
(
c1i
c2i
|ei0|1−γi + 1

)
,

where t0 = Tσi .
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Remark 4: Referring to the studies in [29], [49], [50] and
[20]–[25], some integral TSM/FTSM could be summarized
as in Table 2. The convergence rate of the proposed I-FTSM
surfaces (10) are faster than any of those in Table 1 because
of Remark 3 and the effect of the exponential term eχi|ei| that
could be considered as a self-tuning gain. If the initial states
are far away from zero, the exponential term has a big value
which facilitates increasing the convergence speed.

TABLE 2. The TSM/FTSM manifolds.

B. DESIGN OF CONTROL LAWS
In this subsection, we employ the proposed I-FTSM mani-
folds for the MFPSE (4) and design control laws that make
the I-FTSM variables σi reach zero at some finite amount of
time. The following Theorem describes the structure of the
proposed controller in detail.
Theorem 2: Consider system (4) with the lumped uncer-

tainty satisfying Assumption 1. If the proposed control input
signals are defined as (19) whose design parameters are
adjusted according to (7), (8) and satisfy (9), the I-FTSM
variables converge to zero in certain finite time Tσi .

ui(t) = −fsi(xs, t)−
1

λiη(t)

{
λiη̇(t)xsi − fmi(xm, t)

+c1ieχi|ei|ei + c2i beieγi + a(t) bσie1/2 + ka(t)σi

−

∫ t

0

[
b(t) bσie0 + kb(t)σi

]
dτ
}
. (19)

Proof: From (4) and (12), it can be shown that

σ̇i = ėi + c1ieχi|ei|ei + c2i beieγi

= λiη̇(t)xsi − fmi(xm, t)

+λiη(t)fsi(xs, t)+ dei
+λiη(t)ui(t)+ c1ieχi|ei|ei + c2i beieγi . (20)

Then, using the control laws (19), the above equation leads to

σ̇i = −a(t) bσie1/2 − ka(t)σi

−

∫ t

0

[
b(t) bσie0 + kb(t)σi

]
dτ + dei , (21)

and it follows that{
σ̇i = −a(t) bσie1/2 − ka(t)σi + ϑ,
ϑ̇ = −b(t) bσie0 − kb(t)σi + d

dt dei ,
(22)

where

ϑ = −

∫ t

0

[
b(t) bσie0 + kb(t)σi

]
dτ + dei .

Hence, by invoking Lemma 1 in the connectionwith Assump-
tion 1, we conclude that all state trajectories of (22) goes to
zero in finite time. This implies that the finite-time conver-
gence of the I-FTSM variables is achieved, (i.e., σi = 0) at
most after Tσi .
Remark 5: In view of Theorems 1 and 2, it is clear that

the proposed strategy ensures that the AFT-MFPS between
HPSs (1) and (2) is obtained at most after T satisfying T ≤
maxi=1,2,...,n

{
Tei
}
.

Remark 6: The chattering effect is substantially alleviated
because of the continuity of the suggested control input sig-
nals (19).
Remark 7: If there are no effects of EDaU on the synchro-

nized HPSs (i.e., dei = 0), the second-order sliding mode in
(22) will be maintained from the beginning (i.e, σi = σ̇i ≡

0,∀t ≥ t0), which implies that the differential equation (12)
exhibits the behavior of the closed-loop system.

IV. SIMULATION RESULTS
To further validate the benefit of the proposed algorithm,
two illustrative examples are numerically demonstrated and
analyzed in detail. The first example considers the FT-MFPS
of uncertain HPSs and the second one studies the finite-time
CS (FTCS) of 5D HPSs. In addition, a secure communication
system using 5D HPSs is built to illustrate the application
of the method. The Runge-Kutta integration routine with a
sample time of 10−3(s) is used in all the simulations.

A. EXAMPLE 1
We consider the first example in which the simulation results
of the suggested controller employed for the FT-MFPS of two
systems: the uncertain hyperchaotic Lü system [31] as the
master system and the uncertain hyperchaotic Lorenz system
[32] as the slave system. Besides, a comparison with a new
control technique recently developed in [17] is performed
to illustrate the standout control properties of the proposed
control strategy.

The master system is

ẋm = fm(xm)+ dm(xm), (23)

where

xm = [xm1, xm2, xm3, xm4]T ,

fm(xm) =


fm1(xm)

fm2(xm)

fm3(xm)

fm4(xm)

 =


xm4

−xm1xm3

xm1xm2

xm1xm3

 ,

dm(xm) =


dm1(xm)

dm2(xm)

dm3(xm)

dm4(xm)

 =

36(xm2 − xm1)

20xm2

−3xm3

xm4

 .
The slave system is given by

ẋs = fs(xs)+ ds(xs, t)+ u(t), (24)
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where

xs = [xs1, xs2, xs3, xs4]T ,

fs(xs) =


fs1(xs)

fs2(xs)

fs3(xs)

fs4(xs)

 =


xs4

−xs2 − xs1xs3

xs1xs2

−xs2xs3

 ,

ds(xs, t) =


ds1(xs, t)

ds2(xs, t)

ds3(xs, t)

ds4(xs, t)



=


10(xs2 − xs1)− 0.5 sin(0.25π t)

28xs1 + 0.2 cos(5π t)

−8/3xs3 + 1.8 sin(6π t)

−0.5xs4 + 2 cos(2π t)

 ,
u(t) = [u1, u2, u3, u4]T .

Let the initial states be xm(0) = [1,−1, 1,−1]T and xs(0) =
[−1, 1,−2, 1]T . The scaling parameters and scaling func-
tion in (3) are set as (λ1, λ2, λ3, λ4) = (5,−1,−3, 4)
and η(t) = 5 + sin(0.2π t), respectively. From (23) and
(24), the lumped uncertain terms are described by dei =
−dmi(xm) + λiη(t)dsi(xs, t) that are shown in Fig. 2, which
implies that Assumption 1 is satisfied.

FIGURE 2. The time evolution of the first derivative of the lumped
uncertain term.

We apply the proposed control algorithm (7), (8), (9), (10),
and (19) by choosing a0 = 2, b0 = 14, ka0 = 2.5, kb0 =
30, k00 = 20, c1i = 0.002, c21 = c22 = 30, c23 = c24 = 10,
χi = 0.01, γi = 3/5, (i = 1, 2, 3, 4) and the initial condition
of 00(0) = 2.

The proposed controller is compared with the recently
reported method in [17], designed as

u1 =
1

λ1η(t)

[
â1(xm2 − xm1)+ xm4 − λ1η̇(t)xs1 − ke1

]
−â2(xs2 − xs1)− xs4 − ρ1sign (λ1η(t)e1) ,

u2 =
1

λ2η(t)

[
−xm1xm3 + ĉ1xm2 − λ2η̇(t)xs2 − ke2

]
−ĉ2xs1 + xs2 + xs1xs3 − ρ2sign (λ2η(t)e2) ,

u3 =
1

λ3η(t)

[
xm1xm2 − b̂1xm3 − λ3η̇(t)xs3 − ke3

]
−xs1xs2 + b̂2xs3 − ρ3sign (λ3η(t)e3) ,

u4 =
1

λ3η(t)

[
xm1xm3 + r̂1xm4 − λ4η̇(t)xs4 − ke4

]
+xs2xs3 − r̂2xs4 − ρ4sign (λ4η(t)e4) , (25)

with the update gains as

˙̂a1 = −e1(xm2 − xm1),

˙̂a2 = λ1η(t)e1(xs2 − xs1),

˙̂b1 = e3xm3,
˙̂b2 = −λ3η(t)e3xs3,

˙̂c1 = −e2xm2, ˙̂c2 = λ2η(t)e2xs1,

˙̂r1 = −e4xm4, ˙̂r2 = λ4η(t)e4xs4. (26)

The initial values of the unknown parameters are â1(0) =
b̂1(0) = ĉ1(0) = r̂1(0) = â2(0) = b̂2(0) = ĉ2(0) = r̂2(0) = 1
and k(0) = 2. The controller in [17] is designed assuming
that the boundaries of the external disturbances are known
as a priori, that is, ρ1 = 0.5, ρ2 = 0.2, ρ3 = 1.8, and
ρ4 = 2. For fair comparison, these design parameters as
well as the simulation environment are the same as those used
in [17].

The simulation results of the proposed strategy are pre-
sented in Figs. 3-5. The time evolution of the FT-MFPS errors
is displayed in Fig.3, in which all of the synchronization
errors with the proposed control method converge to zero
quickly in finite time. It means that the FT-MFPS between the
Lü system system and Lorenz system is achieved. Moreover,
the proposed control strategy can accomplish superior con-
trol performance with much smaller synchronization errors
compared with the control technique in [17]. The results of
control input in Fig. 4 show that the chattering phenomenon
is eliminated by applying the proposed technique. Further,
in comparison with the strategy in [17], the proposed control
technique can provide smoother control inputs. Note that
the control laws (25) utilized sign(·) discontinuous func-
tions that will cause chattering phenomenon whenever the
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FIGURE 3. The FT-MFPS errors: Column (a) depicts e(t) in normal scale, Column (b) depicts e(t) in a time interval [0,1] enlarged, and
Column (c) depicts e(t) in a time interval [3,8] enlarged.

external disturbances are big. The fine-time convergence
of the non-singular terminal sliding manifolds is illustrated
in Fig. 5.

B. EXAMPLE 2
The second example investigates the FTCS of 5D Lorenz-like
systems [36] without uncertainties and external disturbances
to illustrate the statement in Remark 7. In comparisonwith the
recently introduced passivity technique-based method [20],
wewill show that the proposed strategy possesses the superior
performance.

The dynamics of the master system has the form

ẋm = fm(xm), (27)

where

xm = [xm1, xm2, . . . , xm5]T ,

fm(xm) =


fm1(xm)
fm2(xm)
fm3(xm)
fm4(xm)
fm5(xm)

 =


10(xm2 − xm1 + xm4
28xm1 − xm1xm3 + xm5
−

8
3xm3 + xm1xm2
2xm4 − xm1xm3
0.09xm1 − 8xm2

 ,

and the slave system is represented in the form

ẋs = fs(xs)+ u(t), (28)

where

xs = [xs1, xs2, . . . , xs5]T ,

u(t) = [u1, u2, . . . , u5]T ,

fs(xs) =


fs1(xs)
fs2(xs)
fs3(xs)
fs4(xs)
fs5(xs)

 =


10(xs2 − xs1 + xs4
28xs1 − xs1xs3 + xs5

−
8
3
xs3 + xs1xs2

2xs4 − xs1xs3
0.09xs1 − 8xs2

 .

As mentioned in Remark 2, the CS error is given by e(t) =
xs(t) − xm(t) corresponding to (3) with λiη(t) = 1. Thus,
the CS error dynamics in this example is obtained as follows
(also see [20])

ė1 = 10(e2 − e1)+ e4 + u1,
ė2 = 28e1 − e1e3 − e1xm3 − e3xm1 + e5 + u2,

ė3 = −
8
3
e3 + e1e2 + e2xm1 + e1xm2 + u3,

ė4 = 2e4 − e1e3 − e1xm3 − e3xm1 + u4,
ė5 = 0.09e1 − 8e2 + u5.

(29)
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FIGURE 4. The control input evolution with respect to time for the
FT-MFPS.

The initial states are set xm(0) = [15,−18,−16, 10, 13]T

and xs(0) = [2, 1, 0, 2, 2]T . The design parameters
in (7), (8), (9), (10), and (19) are set as a0 = 2, b0 = 14, ka0 =
2.5, kb0 = 30, k00 = 20, c1i = 10, c2i = 60, χi = 0.01, γi =
3/5, (i = 1, 2, 3, 4, 5) and the initial condition of 00(0) = 2.
Sangpet and Kuntanapreeda [20] introduced a passivity
approach-based controller for the CS, designed as

u1 = −α1 be1eη0 ,

u2 = −28e1 − e1xm3 + 7e5 −
3xm2
16

e1 − β1 be1eη0 ,

u3 = −α2 be3eη0 ,
u4 = −2e4 + e1e3 + e1xm3 + e3xm1

−
3xm2
160

e1 − β2 be4eη0 ,

u5 = −0.09e1 − β3 be5eη0 , (30)

where α1 = 22.9, α2 = β1 = β2 = β3 = 40.3, xm2 = 30,
and η0 = 3/5. Note that these design parameters are taken
directly from the simulation section in [20] to provide a fair
comparison.

Figures 6-8 show the simulation results. From the
responses of the CS errors in Fig. 6, we can see that the pro-
posed control algorithm is better than the passivity approach
in [20] in both the transient and steady-state performance.
By defining the I-FTSM manifolds as (10) and without the
effects of uncertainties and external disturbances, the I-FTSM
manifold variables are equal to zero from the start as men-
tioned in Remark 7 that is confirmed by Fig. 8. Therefore,
the exponential decay of the CS errors in Fig. 6 is not sur-
prising when observing the description of the closed-loop
system given by (12). The faster convergence of the proposed
control confirms what is stated in Remark 4. In addition,

FIGURE 5. The I-FTSM manifolds for the FT-MFPS.

the finite-time stability in [20] does not hold if uncertainties
and/or external disturbances affect the synchronized systems,
whereas the proposed approach does as shown in the previous
example.

C. APPLICATION TO SECURE COMMUNICATION SYSTEM
By using the 5D Lorenz-like system in Subsection IV-B,
this subsection describes a secure communication system to
demonstrate the application of the suggestedAFT-MFPS con-
trol algorithm. This engineering application is inspired by the
work of Modiri and Mobayen [51]. The information-bearing
signal h(t) is described by the sinc function as follows
(see [51])

h(t) =
150 sin (4π (t − π ))

4π (t − π )
. (31)

At the transmitter side, the signal h(t) is encoded as (see [52])

hen(t) = x2m1 +
(
1+ x2m1

)
h(t), (32)

where hen(t) denotes the encrypted signal and xm1 is the
state variable of (27). Using the similar method as in [51],
the encrypted signal hen(t) and the type of the hyperchaotic
system are transmitted to the receiver. At the receiver side,
the information signal is reconstructed by (see [52])

h̃(t) = −
x2s1

1+ x2s1
+

hen(t)

1+ x2s1
, (33)

where h̃(t) represents the recovered signal and xs1 is the
state variable of (28). It is easy to show that the recovered
signal h̃(t) is identical to the original information signal h(t)
from the time that the FTCS in Subsection IV-B is achieved,
i.e., xs1 ≡ xm1.

VOLUME 8, 2020 149959



X.-T. Tran et al.: Adaptive Second-Order Sliding Mode Algorithm-Based Modified Function Projective Synchronization

FIGURE 6. The CS errors: Column (a) depicts e(t) in normal scale and Column (b) depicts e(t) in a time
interval [0.1,0.5] enlarged.

FIGURE 7. The control input evolution with respect to time for the FTCS.

Figure 9 shows numerical simulations of the secure
communication system using the 5D Lorenz-like system.
It is clear that, after the transient behavior, the decryption

FIGURE 8. The I-FTSM manifolds for the FTCS.

error quickly reaches zero, which implies that the the
information-bearing signal are recovered almost perfectly at
the receiver side.
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FIGURE 9. Secure communication system using 5D Lorenz-like system.

V. CONCLUSION
In this study, the challenge of the adaptive finite-time syn-
chronization problem between different uncertain HPSs has
been investigated, for which a novel AFT-MFPS control algo-
rithm has been proposed. The superior performance of the
proposed control strategy has been theoretically verified and
further numerically validated by comparing with the recent
studies in [17] and [20], and a secure communication system
has been built to demonstrate its practical application. It is
worth noting that the proposed control strategy could be
easily extended to other types of synchronization or chaos
control problem. Future work will include investigating the
usage of the suggested method in real experiments using
relevant application domains [1]–[6]. In addition, the devel-
opment of this method to the case of chaotic systems with
a higher relative degree is another possible future research
direction.
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