Contents lists available at ScienceDirect

Nuclear Engineering and Technology

journal homepage: www.elsevier.com/locate/net

Original Article Validation of nuclide depletion capabilities in Monte Carlo code MCS

NUCLEAR ENGINEERING AND TECHNOLOGY

Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea

Bamidele Ebiwonjumi, Hyunsuk Lee, Wonkyeong Kim, Deokjung Lee^{*}

ARTICLE INFO

Article history: Received 14 March 2019 Received in revised form 9 January 2020 Accepted 25 February 2020 Available online 29 February 2020

Keywords: MCS Depletion Spent nuclear fuel Validation Isotopic inventory

ABSTRACT

In this work, the depletion capability implemented in Monte Carlo code MCS is investigated to predict the isotopic compositions of spent nuclear fuel (SNF). By comparison of MCS calculation results to post irradiation examination (PIE) data obtained from one pressurized water reactor (PWR), the validation of this capability is conducted. The depletion analysis is performed with the ENDF/B-VII.1 library and a fuel assembly model. The transmutation equation is solved by the Chebyshev Rational Approximation Method (CRAM) with a depletion chain of 3820 isotopes. 18 actinides and 19 fission products are analyzed in 14 SNF samples. The effect of statistical uncertainties on the calculated number densities is discussed. On average, most of the actinides and fission products analyzed are predicted within $\pm 6\%$ of the experiment. MCS depletion results are also compared to other depletion codes based on publicly reported information in literature. The code-to-code analysis shows comparable accuracy. Overall, it is demonstrated that the depletion capability in MCS can be reliably applied in the prediction of SNF isotopic inventory.

© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The application of Monte Carlo (MC) methods in the solution of reactor physics problem is becoming more attractive due to advances in computational resources and demand for high-fidelity physics solution. MC methods are advantageous in that they allow for explicit geometry modeling and usage of continuous energy cross-sections. The major drawback in the widespread adoption of MC methods in the reactor physics community is the large amount of computing time and memory required in MC simulations. However, with the possibility of parallel computation, MC methods may soon be used practically in routine simulations.

Over the years, MC neutron transport coupled to nuclide depletion has been performed by linking an independent MC transport code such as MCNPX or Shift to external depletion codes such as CINDER [1] or ORIGEN [2]. Nowadays, there are many Monte Carlo codes which couple the transport simulation and the prediction of actinide/fission product buildup internally. Codes using this type of built-in depletion system include McCARD [3], SERPENT [4], MVP-BURN [5], and RMC [6].

In this paper, we present the validation of the nuclide depletion

* Corresponding author. *E-mail addresses*: ebiwonjumi@unist.ac.kr (B. Ebiwonjumi), hyunsuklee@unist. ac.kr (H. Lee), poryor@unist.ac.kr (W. Kim), deokjung@unist.ac.kr (D. Lee). capability implemented into the MC code MCS. The purpose of this validation is to quantify and analyze the bias and uncertainties associated with the predicted isotopic compositions. The bias is the (C/E - 1) ratio in percent where C and E are the calculated result and experimental data, respectively. The uncertainty is the standard deviation of the (C/E - 1) ratio. Uncertainties due to covariance of nuclear data in a depletion calculation are not presented in this manuscript. The validation work presented here is important for use in spent nuclear fuel (SNF) applications such as criticality safety, burnup credit and cask dose rate analysis. This is also important because MCS is developed to become a reference code for other codes in a verification and validation (V&V) exercise. MCS is a three-dimensional (3D) continuous-energy neutron-photon transport MC code under development at the Ulsan National Institute of Science and Technology (UNIST) since 2013. MCS is developed for analysis of large scale nuclear reactors with fuel depletion, thermal-hydraulic and fuel performance feedback [7]. MCS features a built-in depletion solver to explicitly track thousands of nuclides in its burnup chain.

Measurement programs have been established in the past 50 years to obtain assay data of SNF and are now well accepted internationally as benchmarks. Especially, efforts have been devoted to set up a database of isotopic assay data grouping together the information from those internationally-established programs. Such a database is the Spent Fuel Isotopic Composition Database (SFCOMPO), distributed by the Nuclear Energy Agency

https://doi.org/10.1016/j.net.2020.02.017

^{1738-5733/© 2020} Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

(NEA) of the Organization for Economic Co-operation and Development (OECD) since 2002 [8,9].

SNF assay data obtained from SFCOMPO database is selected as benchmark to validate the depletion capability of MCS in this work. In addition, we compare the results of MCS depletion to the results of other depletion code systems obtained from reports published in the literature. The other codes may feature different burnup chain model, cross section/decay/fission yield/isomeric branching ratio data, power to flux normalization, power history decomposition and modeling. Nevertheless, they have been employed because they have been benchmarked and therefore are suitable for comparison in order to verify the results of MCS. Except otherwise stated, all the results presented in this work are obtained with the ENDF/B-VII.1 cross section and decay/fission yield data.

The plan of this work is as follows. First, we describe the measurement data used for the depletion validation. Second, the computational methods applied in MCS are discussed, and the computational model used to analyze the benchmark is presented. Third, the bias and uncertainties associated with the predicted isotopic compositions in MCS are quantified and analyzed. Then the effect of statistical uncertainties during the depletion calculation is also discussed. Fourth, the results of MCS depletion are compared to other depletion codes. Fifth, the conclusions are summarized.

2. Measurement data of spent nuclear fuel compositions

Post irradiation examination (PIE) data are used for the validation of MCS. The data set contain benchmark SNF isotopic data measured from the destructive analysis of fuel samples cut from fuel rods irradiated in one PWR operated Japan. The experimental methods applied include α -, and γ -spectrometry, isotope dilution mass spectrometry (IDMS), thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS) and luminescent analysis (LA). The PIEs were carried out by Japan Atomic Energy Research Institute (JAERI), now Japan Atomic Energy Agency in Japan, for the measurement of the isotopic content of the SNF samples from the Takahama-3 PWR. The JAERI measurements are summarized in the SFCOMPO database and the benchmark is presented in detail in the reference [10]. The characteristics of the measured fuel are summarized in Tables 1 and 2. Table 1 contains the reactor name, the fuel enrichment, number of fuel samples, fuel sample burnup, the number of irradiation cycles, the IDs of the fuel rods from which the measured samples were taken and the fuel type. The sample identifier, the assembly from which the samples were taken, and the position of the sample from the bottom of the fuel rod active length, and the sample burnup are presented in Table 2. All the measured fuel rods come from assemblies which include gadolinium fuel rods. All the assembly designs considered have 17 x 17 pins. The measured fuel samples were obtained from fuel rods having initial enrichments from 2.6 to 4.1 wt% ²³⁵U and burnups from 14 to 47 GWd/t. The locations of the fuel rods from which the measured samples were obtained are shown in Fig. 1. For the Takahama-3 assembly, the SF95 rod is the fuel rod at the corner of the assembly; SF97 is the fuel rod in the middle of the assembly side and SF96 rod is located adjacent to a guide tube. A total of ten uranium dioxide (UO_2) and four gadolinium $(UO_2-Gd_2O_3)$ SNF samples are analyzed for actinides and fission products of interest to burnup credit, criticality safety, radioactive waste management and radiation safety applications.

3. Description of the Monte Carlo code MCS

3.1. Computational methods

MCS is a 3D continuous energy radiation transport Monte Carlo code under development at UNIST. MCS is designed for the criticality analysis of large scale nuclear reactors with fuel depletion and thermal-hydraulics feedback. MCS has been applied in criticality safety analysis of spent fuel pool and storage cask, radiation shielding, and cask dose rate analysis. MCS solves criticality/ eigenvalue, fixed-source, and multi-physics problems. MCS neutron transport kernel has been validated against ~300 critical cases of the International Criticality Safety Benchmark Experimental Problem (ICSBEP) [11], BEAVRS benchmark [12], VENUS-2 and Hoogenboom Martin benchmark [13,14]. MCS photon fixed-source runs have been verified against reference Monte Carlo codes for shielding problems [15]. MCS has been coupled with the subchannel code CTF [16], fuel performance code FRAPCON [17] and thermal-fluid code GAMMA+ [18] for high fidelity multi-physics applications. Extensive V&V of MCS in the solution of large scale commercial light water reactor whole core depletion and multicycle operation is ongoing [19-23].

MCS features a variety of temperature dependent on-the-fly cross section processing capabilities. In the resolved resonance range, the multipole representation is used to calculate Doppler broadened cross-sections [24]. The probability table (PT) method is used in the unresolved resonance range to account for selfshielding effects and to generate self-shielded cross section. PT is used in this work [25]. In the thermal range, interpolation function is used to generate broadened thermal scattering data [26]. In this study, $S(\alpha, \beta)$ of ¹H in light water is used. The free-gas treatment is used for all the nuclides including ¹H. For ¹H, both $S(\alpha, \beta)$ and the free-gas treatment are selectively used depending on the incident neutron energy. In the thermal energy range, $S(\alpha, \beta)$ is used. And the free-gas treatment is used for all energy range except the thermal energy range. Doppler Broadening Rejection Correction (DBRC) is used to consider resonance scattering due to thermal motion of heavy target nuclides.

MCS tallies the one-group neutron flux and reaction rates during the transport simulation, for use in the depletion calculation. The depletion solver takes advantage of the parallel calculation capabilities present in MCS. Burnup calculations in MCS employs a depletion chain of 3820 nuclides (all the nuclides in the ENDF decay library) and solves the transmutation equation by the Chebyshev Rational Approximation Method (CRAM) [27]. All the decay modes stated in the ENDF/B-VII.1 decay library is accounted for in detail. 6 neutron-induced reaction types are considered: (n, γ) , (n, 2n), (n,3n), (n, α) , (n, p) and (n, fission), where the fission reaction rates are tallied in three-group. On-the-fly energy released per fission is used to obtain kappa values. Full and semi predictor-corrector depletion

Table 1

Characteristics of PWR spent fuel rods for the PIE^a.

Reactor ^b	Enrichment (wt.% ²³⁵ U)	No. of samples	Burnup (GWd/t)	No. of cycles	Fuel rod ID	Fuel
Takahama-3	4.11 4.11 2.63	5 5 4	14.3–30.4 30.7–47.3 16.4–28.9	2 3 2	SF95 SF97 SF96	$\begin{array}{l} UO_2\\ UO_2\\ UO_2\text{-}Gd_2O_3 \end{array}$

^a The measurement facility is JAERI.

^b Fuel assembly design is 17 x 17.

Table 2	
Main parameters of the measured spent fuel s	samples.

Reactor	Assembly ID	Sample ID	Axial location ^a (mm)	Sample burnup (GWd/t)
Takahama-3	NT3G23	SF95-1	3606	14.30
		SF95-2	3446	24.35
		SF95-3	2926	35.42
		SF95-4	1646	36.69
		SF95-5	246	30.40
		SF96-2	3471	16.44
		SF96-3	2951	28.20
		SF96-4	1671	28.91
		SF96-5	271	24.19
		SF97-2	3457	30.73
		SF97-3	3180	42.16
	NT3G24	SF97-4	1968	47.03
		SF97-5	881	47.25
		SF97-6	251	40.79

^a Distance measured from bottom of fuel active length.

Fig. 1. Fuel assembly geometry showing locations of fuel rods containing the measured samples.

Legend: red (UO₂), gray (UO₂-Gd₂O₃), black (measured UO₂), yellow (measured UO₂-Gd₂O₃), blue (moderator), green (guide tube). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

schemes are implemented in MCS to reduce time-discretization error during burnup calculation. For the depletion of gadolinium fuel, a quadratic depletion method is used [28]. Details of the computational methods in MCS can be found in the reference [7]. The data used in MCS transport and depletion calculations in this work is based on ENDF/B-VII.1 cross section and decay/fission yield. However, ENDF/B-VII.0 data is used in Section 4.2 to investigate some discrepancies in the (C/E - 1) and in Section 4.5 to perform code-to-code comparison.

3.2. Computational models

The burnup calculation model used to interpret the experimental benchmark is a two-dimensional (2D) representation of the fuel assembly from which the fuel rods and samples were obtained. Reflective boundary conditions have been adopted in the depletion calculations and detailed irradiation histories and fuel assembly specifications are modelled. In a typical fuel assembly depletion calculation, the assembly power is required and given as an input parameter. However, for the benchmarks analyzed in this study, the assembly power is not given. What is given is the power history of the fuel samples *i.e.*, pin power. Because of this, MCS normalizes the reaction rate with the power tallied in the measured fuel rod in order to obtain the normalization factor which will be used in the depletion calculation. The pellet region of the gadolinium-bearing fuel rods is divided into ten equal-volume rings. All the fuel rods in each assembly considered are depleted independently. The geometry of the fuel assemblies is modelled in full. ¼ or 1/8 symmetry condition is not applied in the calculations and the reaction rates are tallied in each of the fuel pins. There is no information on neighboring assemblies, thus, they were not included in the simulations, *i.e.*, single assembly model is used.

The reactor operation data, namely, the power and boron concentration history, fuel pin specifications, and fuel temperature for each of the fuel samples were obtained from the benchmark documentations [9,10]. For all the fuel samples, the axial variation in the neutron spectrum is considered through the different power history and the axial variation in the temperature of the moderator. The local neutron spectrum is largely influenced by the moderator density because of its significant impact on the neutron thermalization. For cases in which the moderator temperature or density at the sample axial location is not available, it was determined based on 2 assumptions: 1) the increase in moderator temperature is proportional to the integrated power from the end of the fuel active length to the sample location 2) the axial power distribution is a cosine function of the fuel active height. With the moderator temperature determined, the moderator density was estimated from temperature versus pressure tables.

For the transport calculations, 50 inactive and 200 active cycles are simulated with 100,000 neutron histories. Five million neutrons are used to converge the fission source distribution and 20 million neutrons are transported during the active cycles before each depletion step. Large number of neutron histories are employed for the 2D problems to reduce the statistical uncertainties. The maximum size of the burnup steps during the depletion calculation is ~2.5 MWd/Kg. The number of burnup steps used to deplete all the fuel samples varies for instance from 51 steps for a final burnup of 14 MWd/kg.

The fuel sample burnup in the benchmark documentation were determined by the ¹⁴⁸Nd method [29], a widely used burnup indicator, because of the high accuracy of ¹⁴⁸Nd measurement by isotopic dilution mass spectrometry. The burnup determined by the ¹⁴⁸Nd method has an uncertainty of about 3%. The fuel sample

burnups given in the benchmark documentation were reproduced by MCS. Thus, in this study, the fuel sample burnups were not adjusted.

4. Results and discussion

The calculation-to-experiment ratio (C/E), where *C* is the calculated value and *E* is the experimental value, is used to compare the calculated and the measured isotopic data from the benchmark. The measurement uncertainties (at one standard deviation) of nuclides measured in the samples are presented in Table 3. These uncertainties account for only the accuracy/precision of the measurement instruments and methods. These uncertainties do not include uncertainties in fuel sample dissolution, uncertainties in chemical separation of elements before isotopic contents are measured by spectrometric techniques, and uncertainties in isotopic dilution. These do not represent the uncertainties at all the steps during the measurement and from all sources of uncertainty *i.e.*, not total.

For each of the nuclide, the (C/E) value is provided in detail against the sample burnup in the appendix (Tables A, B and C) to highlight potential burnup or sample axial position dependence of the (C/E) values, detect trends and identify potential outlier measurements. Potential outlier measurement might be due to difficulty in measuring the very small number densities, such as isotopes of americium and curium. It could also be due to the small accuracy of the measurement method. As the (C/E) values in the appendix show, no obvious trend with burnup is observed for the

 Table 3

 Nuclide measurement uncertainties for the samples analyzed in this work (1-sigma %)

Sample	SF95*/SF96*SF97*
²³⁴ U	1.0
²³⁵ U	0.1
²³⁶ U	2.0
²³⁸ U	0.1
²³⁷ Np	10.0
²³⁸ Pu	0.5
²³⁹ Pu	0.3
²⁴⁰ Pu	0.3
²⁴¹ Pu	0.3
²⁴² Pu	0.3
²⁴¹ Am	2.0
²⁴³ Am	0.5
²⁴² Cm	10.0
²⁴³ Cm	2.0
²⁴⁴ Cm	2.0
²⁴⁵ Cm	2.0
²⁴⁶ Cm	0.5
²⁴⁷ Cm	10.0
¹⁰⁶ Ru	5.0
¹³⁴ Cs	3.0
¹³⁷ Cs	3.0
¹⁴⁴ Ce	10.0
¹⁴² Nd	0.1
¹⁴³ Nd	0.1
¹⁴⁴ Nd	0.1
¹⁴⁵ Nd	0.1
¹⁴⁶ Nd	0.1
¹⁴⁸ Nd	0.1
¹⁵⁰ Nd	0.1
¹⁵⁴ Eu	3.0
¹⁴⁷ Sm	0.1
¹⁴⁸ Sm	0.1
¹⁴⁹ Sm	0.1
¹⁵⁰ Sm	0.1
¹⁵¹ Sm	0.1
¹⁵² Sm	0.1
¹⁵⁴ Sm	0.1

uranium isotopes. The minor actinides, *i.e.*, ²³⁷Np, ²⁴¹Am and ^{242,243,245,246}Cm display a large spread in their (C/E) values, and they have large (C/E) standard deviation greater than 10%. The reason for this large standard deviation is explained in Section 4.3. Among the major actinides, ²³⁴U shows the largest spread in (C/E) values. A noticeable trend in nuclide (C/E) values due to sample burnup/axial location is observed and concerns the SF95-1 sample of Takahama-3. This sample is obtained from an axial location close to the top of the SF95 rod and has a low burnup of 14 GWd/tU. Compared to the other Takahama-3 results, SF95-1 shows a different (C/E) value in ^{239,241,242}Pu (overestimation), and ²⁴³Am (large overestimation). This sample is irradiated by a neutron spectrum which is different from the rest of the fuel. Overall, no clear outlier (C/E) value is observed and the authors trust all the measurements with an equal confidence level.

Based on the fuel assembly model developed in the previous section, the (C/E) comparison is summarized in Tables 4 and 5 for measured actinides and fission products respectively. The nuclides shown in these tables are important to radioactive waste management, radiation safety, decay heat, radiation source terms and burnup credit according to OECD/NEA [30]. Due to the lack of a complete set of measurement uncertainty noted at the beginning of this section, the average (C/E) values shown in Tables 4 and 5, are not weighted with the available experimental uncertainties. They are the simple averages of the (C/E) values from each of the fuel samples in which the nuclide was measured. It should be noted that an average (C/E) "forgets" about the burnup dependence of the (C/E)E) values and places an equal confidence level on all the measurements (in the absence of potential outliers). The value σ shown in Tables 4 and 5 for each nuclide is the sample standard deviation of the (C/E) values (see the footnotes of Table 4).

As shown in Tables 4 and 5, for most of the actinides and fission products, MCS depletion results obtained with ENDF/B-VII.1 lie within 6% of the measured values. Overall agreement with experiment is good. We start by reviewing the individual (C/E) ratios based on the ENDF/B-VII.1 results, for nuclides of interest to source term analysis and burnup credit applications. Then we compare ENDF/B-VII.1 and ENDF/B-VII.0 results for the SF97-4 sample. We

Table 4			
2/E	· · ·		

C/E results	for	actinides.
-------------	-----	------------

NL - II I -	Number of complete			
Nuclide	Number of samples	MCS ENDF/B-V	11.1	
		Average ^a	σ^{b}	
²³⁴ U	14	1.051	0.092	
²³⁵ U	14	1.009	0.011	
²³⁶ U	14	0.987	0.019	
²³⁸ U	14	0.999	0.001	
²³⁷ Np	5	0.992	0.017	
²³⁸ Pu	14	1.033	0.070	
²³⁹ Pu	14	1.052	0.037	
²⁴⁰ Pu	14	1.049	0.028	
²⁴¹ Pu	14	1.037	0.046	
²⁴² Pu	14	1.031	0.040	
²⁴¹ Am	14	1.161	0.196	
²⁴³ Am	14	1.031	0.064	
²⁴² Cm	14	1.039	0.195	
²⁴³ Cm	10	0.941	0.124	
²⁴⁴ Cm	14	1.060	0.092	
²⁴⁵ Cm	9	1.187	0.144	
²⁴⁶ Cm	8	0.825	0.216	

^a Mean of sample (C/E) distribution calculated as *Average* = $\frac{1}{n} \sum_{i=1}^{n} {\binom{C}{E}_{i}}$

^b Standard deviation of sample (C/E) distribution calculated as $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left[\left(\frac{C}{E} \right)_i - Average \right]^2}, \text{ where } i \text{ is the index of the measured sample}$

and n is the total number of fuel samples measured.

 Table 5

 C/E results for fission products

Nuclide	Number of samples	MCS ENDF/B-VII.1	
		Average ¹	σ^2
¹⁰⁶ Ru	14	1.259	0.252
¹³⁴ Cs	14	0.973	0.029
¹³⁷ Cs	14	0.987	0.017
¹⁴⁴ Ce	14	1.031	0.059
¹⁴² Nd	5	0.874	0.057
¹⁴³ Nd	14	0.968	0.014
¹⁴⁴ Nd	14	0.949	0.031
¹⁴⁵ Nd	14	0.995	0.014
¹⁴⁶ Nd	14	0.996	0.023
¹⁴⁸ Nd	14	1.007	0.016
¹⁵⁰ Nd	14	1.011	0.017
¹⁵⁴ Eu	14	1.149	0.055
¹⁴⁷ Sm	5	1.017	0.011
¹⁴⁸ Sm	5	0.995	0.015
¹⁴⁹ Sm	5	0.999	0.052
¹⁵⁰ Sm	5	1.064	0.008
¹⁵¹ Sm	5	0.987	0.023
¹⁵² Sm	5	1.049	0.006
¹⁵⁴ Sm	5	1 101	0.009

^{1,2} See footnote of Table 4.

continue the discussion with the analysis of some of the results according to fuel rod type. Then the effect of statistical uncertainties in the Monte Carlo depletion calculation is discussed. Finally, we complete the discussion by comparing MCS depletion results to other depletion codes.

4.1. Discussion of ENDF/B-VII.1 results

As illustrated in Table 4 for the ENDF/B-VII.1 results, the uranium isotopes ^{234,235,236}U are predicted on average by about 5%, 1%, and less than 1.5%, respectively. ²³⁴U is overestimated and similar overestimation has also been reported using SCALE (ENDF/B-VII.0) and CASMO (JENDL-4.0) code systems and data libraries [31,32]. Plutonium isotopes ^{238,241,242}Pu are predicted on average within less than 4%. The large underestimation of ²³⁸Pu with ENDF/B-VII.0 (10% on average) has been eliminated due to the decrease of the ²³⁸Pu(n, γ) and increase of the ²³⁹Pu(n, 2n) one-group cross-sections with ENDF/B-VII.1.²⁴¹Am is overestimated by about 16% and ²⁴² ²⁴³Am is well predicted by 3%, on average. A portion of ²⁴¹Am is produced by 241 Pu (β^- decay). However, 241 Pu is overestimated by about 4%. This cannot explain the 16% overestimation of ²⁴¹Am. ²⁴¹Am is lost by (n, γ) , (n, 2n) reactions and alpha decay of itself. An underestimation of the ²⁴¹Am (n, γ) cross section could be partially responsible for the overestimation of ²⁴¹Am. Curium isotopes ^{242,244}Cm contribute to neutron source in spent fuel for cooling times less than 100 years. ^{243,244,245}Cm are important in burnup credit criticality safety analysis of MOX fuel. On average, the important curium isotopes are predicted within 6%, except for ²⁴⁵Cm. Curium isotopes are largely sensitive to uncertainties in the burnup, considering that they are at the end of the depletion chain.

Table 5 shows that samarium isotopes are predicted on average within 5%, except for ^{150,154}Sm which is overestimated by about 7% and 10%, respectively. ¹⁴⁹Sm and ¹⁵¹Sm are very important burnup credit fission product isotopes because of their large neutron capture cross sections. Cesium isotopes are predicted on average within less than 3% of experiment. ¹³⁴Cs is important in decay heat studies of spent fuel in the first ten years after discharge. ¹³⁷Cs is important for decay heat at long cooling times over 100 years. One of the fission products which dominates spent fuel decay heat in the first ten years after discharge from reactor, ¹⁴⁴Ce, is predicted on average within ~6%. Among the neodymium isotopes, ^{143,145}Nd are

Table 6		
C/E - 1	results for actinides	$(\%)^{a}$

Nuclide	MCS ENDF/B-VII.1	MCS ENDF/B-VII.0
²³⁴ U	4.80	4.73
²³⁵ U	-0.38	-0.13
²³⁶ U	-0.15	-0.01
²³⁸ U	-0.07	-0.07
²³⁷ Np	-0.70	-0.14
²³⁸ Pu	-1.43	-11.22
²³⁹ Pu	2.03	2.83
²⁴⁰ Pu	6.48	6.64
²⁴¹ Pu	-0.22	-0.35
²⁴² Pu	0.43	-2.98
²⁴¹ Am	-4.26	6.66
²⁴³ Am	-4.40	7.02
²⁴² Cm	29.32	23.41
²⁴³ Cm	-0.36	-23.76
²⁴⁴ Cm	-1.96	-2.30
²⁴⁵ Cm	5.94	10.41
²⁴⁶ Cm	-14.30	-7.14

^a Only for SF97-4 sample.

important in burnup credit applications and are well predicted on average by 3% and within 1%, respectively. On average, the burnup indicators, ^{145,146,148,150}Nd, show good agreement with experiment, by about 1%. ¹⁵⁴Eu is largely overestimated by about 15%. This may be due to an underestimation of the ¹⁵⁴Eu (n, γ) cross section.

4.2. Analysis of ENDF/B-VII.1 and ENDF/B-VII.0 result

This section examines the difference in results due to the change of nuclear data library from ENDF/B-VII.0 to ENDF/B-VII.1. Previously, MCS uses ENDF/B-VII.0 data, however, ENDF/B-VII.1 is the data library currently used for production. ENDF/B-VII.0 and ENDF/ B-VII.1 results are compared in Tables 6 and 7 for the SF97-4 sample based on the fuel assembly model. The results indicate similar agreement between calculation and experiment for most of the nuclides, with a few exceptions, notably among the actinides:

- ^{238,242}Pu (about 10% and 2.5% difference, respectively, going from ENDF/B-VII.0 to ENDF/B-VII.1);
- ^{241,243}Am (about 2.5% difference, respectively);
- ^{243,245}Cm (about 23% and 5% difference, respectively);

The purpose of the comparison between numerical results of ENDF/B-VII.0 and ENDF/B-VII.1 is to identify the sources of the differences observed in the results. The effect of the library data on the result for the nuclides which show differences is assessed. An investigation of the one-group cross sections tallied by MCS and used in the depletion calculation was carried out to identify which specific data is responsible for the differences in Table 6. ²³⁸Pu can be produced by ²³⁹Pu (n, 2n) reaction and destroyed by the ²³⁸Pu (n, γ) reaction. As can be seen in Table 6, ²³⁸Pu is underestimated by about 11% using ENDF/B-VII.0. Tables 8 and 9 show that the difference in the ²³⁸Pu C/E ratio (see Table 6) is due to the decrease of the ²³⁸Pu (n, γ) cross-section and increase of the ²³⁹Pu (n, 2n) crosssection from ENDF/B-VII.0 to ENDF/B-VII.1.²⁴²Pu is underestimated by about 3% when using ENDF/B-VII.0. A decrease of the 242 Pu (n, γ) cross-section in ENDF/B-VII.1 leads to a very good agreement within 0.5%. ²⁴¹Am is overestimated by about 7% in ENDF/B-VII.0. An increase of the ²⁴¹Am (n, γ) cross-section in ENDF/B-VII.1 decreases this bias to within 5%. ²³⁴Am is overestimated by about 7% with ENDF/B-VII.0. The bias is now within less than 5% due to the increase of the ²⁴³Am (n, γ) cross-section. ²⁴³Cm shows a large underestimation (about 24%) with ENDF/B-VII.0 which is significantly reduced when using ENDF/B-VII.1, most likely due to

Table	7

C/E - 1 results for fission products (%)^a.

Nuclide	MCS ENDF/B-VII.1	MCS ENDF/B-VII.0
¹⁰⁶ Ru	16.10	16.59
¹³⁴ Cs	-1.69	0.68
¹³⁷ Cs	-1.74	-1.24
¹⁴⁴ Ce	12.79	12.77
¹⁴³ Nd	-1.31	-1.18
¹⁴⁴ Nd	-5.63	-5.70
¹⁴⁵ Nd	1.07	-0.62
¹⁴⁶ Nd	0.02	1.36
¹⁴⁸ Nd	1.82	1.60
¹⁵⁰ Nd	2.37	1.97
¹⁵⁴ Eu	8.03	5.31
¹⁴⁷ Sm	0.34	0.41
¹⁴⁸ Sm	-1.67	-2.11
¹⁴⁹ Sm	5.23	5.02
¹⁵⁰ Sm	6.00	5.59
¹⁵¹ Sm	-2.05	-1.82
¹⁵² Sm	4.31	3.02
¹⁵⁴ Sm	10.82	10.01

^a See footnote of Table 6.

Table 8

MCS one-group (n,	γ) cross sections	(barns)

Nuclide	ENDF/B-VII.1	ENDF/B-VII.0	Difference ^a (%)
²³⁸ Pu	20.69	29.95	44.75
²⁴² Pu	25.96	28.56	10.03
²⁴¹ Am	108.19	94.14	-12.99
²⁴³ Am	53.41	47.54	-10.99
²⁴² Cm	5.09	4.11	-19.16
²⁴⁴ Cm	17.25	18.16	5.27
	/FNDF/B – VII	0)	

^a Calculated as $100*\left(\frac{ENDF/B - VII.0}{ENDF/B - VII.1} - 1\right)$.

increase of the ²⁴²Cm (n, γ) cross-section. ²⁴⁵Cm is overestimated by about 10% using ENDF/B-VII.0. The overestimation is however reduced to about 6% in ENDF/B-VII.1, thanks to the decrease of the ²⁴⁴Cm (n, γ) cross-section.

4.3. Analysis of results by fuel rod type

Table 10 presents the average (C/E - 1) for the nuclides ²³⁷Np, ²⁴¹Am, ²⁴⁵Cm, ¹⁰⁶Ru and ¹⁵⁴Eu established separately for each fuel rod, to identify possible bias due to fuel rod location in the assembly. These nuclides show large (C/E - 1) and standard deviation. The uncertainties in number densities of ²³⁹Pu in the SF95 and SF97 rod samples could be largely affected by uncertainties in the inter-assembly water gap, because these rods are located on the periphery of the assembly [30].

As can be seen in Table 10, the ²³⁷Np (C/E – 1) average is dominated by the SF96 rod samples. This is caused by the large overestimation of ²³⁷Np in the samples from the gadolinium bearing rod SF96 (see Table C in the appendix). The overestimation of ²³⁷Np in the SF96 samples have also been observed in the analyses of the same PIE data with CASMO calculations based on the JENDL-4.0 library [32]. Without the SF96 samples, ²³⁷Np is well predicted on average within 1% (see Table 4). The ²³⁷Np results from the SF96 samples are not included in Table 4.

For ²⁴¹Am, the (C/E – 1) trend shows strong overestimations in the SF95 and SF96 rod fuel samples. ²⁴¹Am is overestimated on average in the SF97 samples by about 4%. At the time of measurement, the PIE data for all nuclides from the Takahama-3 experiment were corrected back to the date of reactor discharge, except for samarium isotopes [10]. The amount of ²⁴¹Am during measurement

MCS one-group (n, 2n) cross sections (barns).

Nuclide	ENDF/B-VII.1	ENDF/B-VII.0	Difference ^a (%)
²³⁹ Pu ²⁴¹ Am	1.37E-03 4.27E-04	1.34E-03 4.13E-04	-2.42 -3.35

^a See footnote of Table 8.

Table	10	
С/Е —	1 results by fuel rod (%).	

Rod	SF95		SF97		SF96	
Nuclide	Average ^a	$\sigma^{\rm b}$	Average	σ	Average	σ
²³⁹ Pu ²³⁷ Np ²⁴¹ Am ²⁴⁵ Cm ¹⁰⁶ Ru ¹⁵⁴ Eu	9.74 _ ^c 15.32 32.42 25.26 18.07	1.84 20.67 9.76 10.89 3.69	2.59 -0.77 3.76 7.72 21.68 9.08	1.69 1.72 9.09 4.95 37.34 1.67	2.91 48.11 32.49 32.13 18.34	0.74 6.08 15.65 16.42 4.16

^{a, b} Calculated according to number of samples in each rod.

^c No data for this rod.

is mostly driven by ²⁴¹Pu decay. It is noted that large uncertainties had been introduced when the measured ²⁴¹Am is corrected for the ²⁴¹Pu contribution. These uncertainties were not accounted for totally and have been underestimated to a large extent by the measurement laboratory [33].

The average (C/E – 1) of 245 Cm is largely driven by the SF95 rod samples. ²⁴⁵Cm is not measured in the SF96 rod. ²⁴⁵Cm overestimation is about 8% in the SF97 rod, relatively very low, compared to SF95. For ¹⁰⁶Ru, the overestimation in the (C/E - 1) average is consistently observed in the three fuel rods with very large standard deviations. It is challenging to measure ¹⁰⁶Ru in spent fuel due to difficulty in dissolving the metallic fission product. 154 Eu is also overestimated in all the samples and the average (C/E (-1) is influenced by the fuel samples from the three rods. We also note in Table 10 that the samples have large (C/E - 1) standard deviation (except ¹⁵⁴Eu). This could be an indication that the measurement uncertainties of these nuclides are larger than the values reported and/or experimental methods with higher accuracy may be needed. The large standard deviations observed in Tables 4 and 5 are consistent with the reports of other PIE analysis [31.32]

4.4. Effect of statistical uncertainties

In MC depletion calculations, uncertainty in the nuclear data are propagated through the reaction rates and the nuclide number densities. In addition, MC calculation results include statistical uncertainties. The effect of these uncertainties on nuclide number densities needs to be assessed. The aim of this section is to examine the effect of the statistical uncertainties during depletion calculation in MCS. The propagation of uncertainties due to covariance of nuclear data during depletion will be discussed in another report. The propagation of statistical uncertainties during MC depletion calculations have been studied and the number densities uncertainties at the end of depletion have been shown to be small [34,35]. In the MCS code, the statistical uncertainty of number densities from depletion simulations are not calculated. The statistical uncertainties of the reaction rates/one-group cross-sections are calculated by MCS, but they are not propagated during the depletion calculations. In order to examine the effect of the statistical uncertainties of the number densities, we performed 30 independent simulations starting with different random number

Fig. 2. Statistical uncertainties of nuclide number densities during depletion calculation in MCS.

seeds. The number densities calculated from these multiple simulations are then used to the determine the statistical uncertainties associated with each nuclide number densities at each depletion step. In Fig. 2, we show the relative statistical uncertainty of the nuclide number densities during the depletion calculation for ²³⁵U, ²³⁸Pu, ²³⁷Np, ²⁴¹Am and ¹⁴⁸Sm. These results are obtained from 30 independent pin-cell simulations of the SF97-4 fuel sample (burnup = 47 GWd/tU) with 50 inactive/100 active cycles and 5000 neutron histories. At the beginning of cycle, for all the nuclides analyzed in this work, the maximum statistical uncertainty is less than 1%, except for ²³⁷Np, ²³⁸Pu, and ²⁴³Am. For ²³⁷Np, ²³⁸Pu, and ²⁴³Am, the statistical uncertainties are less than 2% at the beginning of cycle. High uncertainties of ²³⁷Np, ²³⁸Pu, and ²⁴³Am are due to their very small number densities at low burnups. The uncertainties at the end of depletion are less than 0.6% for all the nuclides presented in Tables 4 and 5. At each depletion step, the statistical uncertainties of the capture/fission reaction rates are about 0.2%, and about 2% for the (n, 2n) reaction rate. For all the nuclides presented in Tables 4 and 5, the statistical uncertainties are observed to be small at the end of depletion. The effect of the statistical uncertainties is minimal, even when the number of neutron histories is not large. The statistical uncertainties of the calculated number densities are not included in the evaluation of the (C/E - 1) average and standard deviation.

4.5. Comparison of MCS performance to other depletion codes

The performance of MCS depletion capability is compared to

Table 11

Comparison of C/E - 1 (%) for OECD/NEA BUC benchmark phase 1-B, Case A.

Nuclide	MCS ^a	SCALE ^b	MCNPX ^c	MCNP-ACAB ^d	MONTEBURNS ^d	SERPENT ^d	Experimental uncertainty (%)
²³⁴ U	-0.9	-0.6	-11.0	-0.1	0.8	-0.9	3.2
²³⁵ U	-2.7	-4.2	-1.4	-2.6	-2.8	-3.0	3.2
²³⁶ U	1.4	1.8	1.0	4.1	4.1	1.7	3.2
²³⁸ U	-0.6	-0.6	-0.6	1.5	1.5	-0.6	3.2
²³⁸ Pu	-14.5	-13.1	-6.8	-13.3	-10.1	-12.6	3.2
²³⁹ Pu	-2.1	0.0	-8.5	-0.4	-0.4	-3.0	3.2
²⁴⁰ Pu	-3.7	-0.2	-4.8	-0.4	0.4	-1.8	3.2
²⁴¹ Pu	-3.4	-1.8	-2.7	-1.1	-0.9	-1.9	3.2
²⁴² Pu	-3.6	-1.6	5.7	1.0	1.0	0.0	3.2
¹³³ Cs	-1.0	0.7	-3.0	2.6	2.6	0.1	NA
¹⁴³ Nd	-1.9	0.3	-4.8	2.3	2.1	-0.6	2.0
¹⁴⁵ Nd	-2.7	-0.7	-4.3	2.1	1.6	-0.8	2.0

NA = not available.

^a Results from this work.

^b Results from Ref. [31].

^c Results from Ref. [1].

^d Results from Ref. [37].

other depletion codes in this section. The results from the other depletion codes used in this section are based on publicly available information in literature. We did not run these other depletion codes.

4.5.1. Comparison with SCALE and other MC based depletion codes

A comparison of depletion results between MCS, SCALE 6.1, MCNPX, MCNP-ACAB, MONTEBURNS and SERPENT is performed. For this comparison, one PWR fuel sample which is designated as Case A in the OECD/NEA burnup credit (BUC) computational benchmark is analyzed by MCS. The benchmark is a pin cell problem depleted to 27.35 GWd/t burnup. Details of the benchmark problem can be found in the reference [36]. Table 11 shows the comparison of the (C/E - 1) values obtained with MCS, SCALE 6.1, MCNPX, MCNP-ACAB, MONTEBURNS and SERPENT, and the reported experimental uncertainty at two standard deviations. The SCALE depletion sequence used in the calculation is TRITON with the 238-group cross-section library as reported in Ref. [31]. MCNPX results were obtained with MCNP coupled to CINDER90 depletion code [1]. The results from MCNP-ACAB, MONTEBURNS and SER-PENT were obtained from the reference [37]. The calculation results of this section are based on the ENDF/B-VII.0 library.

Table 11 shows that the isotopes of plutonium are predicted within the experimental uncertainty by all the codes except for ²³⁸Pu which is largely underestimated. Although, MCS predicts ^{240,241,242}Pu slightly outside the experimental uncertainty. ²³⁵U is also underestimated by all the codes. ²³⁴U is calculated within the experimental uncertainty by all the codes, except for MCNPX. ²³⁶U is calculated within the experimental uncertainty by MCS, SCALE 6.1, MCNPX and SERPENT; MCNP-ACAB and MONTEBURNS overestimates ²³⁶U by about 4%. ¹³³Cs is predicted within 1% by MCS, SCALE 6.1 and SERPENT, and within 3% by MCNPX, MCNP-ACAB and MONTEBURNS. ¹⁴³Nd is predicted within the experimental uncertainty by MCS, SCALE 6.1 and SERPENT. Whereas MCS, MCNPX, and MCNP-ACAB predicts ¹⁴⁵Nd outside the experimental uncertainty. In general, the code/code comparison showed the performance of MCS relative to other codes. For the presented comparison, MCS performs with reasonably good accuracy compared with other widely used depletion codes.

5. Conclusions

The experimental validation of the Monte Carlo code MCS for SNF applications has been presented. The purpose of the validation

is to assess the accuracy and performance of MCS in predicting PWR SNF isotopic compositions. The targeted SNF applications include burnup credit criticality safety analyses, radiation safety, radioactive waste management, decay heat and radiation source terms. The validation range covers 2.6 to 4.1 wt% ²³⁵U enrichment and burnup up to 47 GWd/MTU. UO₂ and UO₂-Gd₂O₃ fuels are analyzed. The depletion calculation employs a 2D fuel assembly model, using continuous energy cross section data obtained from ENDF/B-VII.1. The analysis shows average (C/E – 1) within 6% for the actinides ^{234,235,236}U, ²³⁷Np, ^{238,239,240,241,242}Pu, ²⁴³Am, ^{242,243,244}Cm, and the fission products ^{134,137}Cs, ^{143,145,146,150}Nd, and ^{147,148,149,151,152}Sm. Overall, the validation shows good agreement with measurement for fuel inventory calculations. Moreover, the statistical uncertainties of the nuclide number densities are observed to be small at the end of depletion.

MCS results were also compared to those of other depletion codes using publicly available validation results from literature [1,31,37]. The comparison shows that MCS can predict SNF compositions with accuracy comparable to other code systems. The results presented in this work demonstrate the MCS code as an accurate tool for SNF isotopic inventory prediction.

In the future, the MCS depletion validation work will be expanded to cases of higher enrichment and burnup. The validation of the radiation source term analysis capability of MCS and the propagation of nuclide number density uncertainties during depletion is also planned.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported by the project(L18S015000) by Korea Hydro & Nuclear Power Co. Ltd..

Appendix A

Table A	
MCS C/E for Takahama-3	SF95 fuel rod samples.

Sample ID	SF95-1	SF95-2	SF95-3	SF95-4	SF95-5
Burnup (GWd/t)	14.30	24.35	35.42	36.69	30.40
²³⁴ U	1.091	0.978	1.243	1.236	0.909
²³⁵ U	1.004	1.017	1.015	1.024	1.008
²³⁶ U	1.010	0.989	1.005	1.002	0.992
²³⁸ U	0.999	0.998	0.998	0.998	0.998
²³⁸ Pu	1.149	1.032	1.151	1.137	1.115
²³⁹ Pu	1.134	1.089	1.095	1.084	1.086
²⁴⁰ Pu	1.070	1.034	1.063	1.073	1.061
²⁴¹ Pu	1.167	1.057	1.064	1.054	1.073
²⁴² Pu	1.164	1.034	1.026	1.026	1.059
²⁴¹ Am	0.896	1.153	1.112	1.528	1.077
²⁴³ Am	1.181	1.077	1.089	1.084	1.098
²⁴² Cm	1.103	0.908	0.797	0.682	1.046
²⁴³ Cm	0.605	0.920	1.097	1.027	0.938
²⁴⁴ Cm	1.235	1.069	1.189	1.139	1.218
²⁴⁵ Cm	No data	1.173	1.433	1.311	1.381
²⁴⁶ Cm	No data	No data	0.932	0.888	1.138
¹⁰⁶ Ru	1.083	1.268	1.363	1.367	1.183
¹³⁴ Cs	1.014	0.982	1.008	0.992	0.994
¹³⁷ Cs	0.982	0.972	0.981	0.975	0.986
¹⁴⁴ Ce	0.998	1.000	0.974	1.063	1.007
¹⁴² Nd	0.783	0.919	0.851	0.868	0.948
¹⁴³ Nd	0.965	0.967	0.967	0.974	0.973
¹⁴⁴ Nd	0.983	0.973	0.981	0.945	0.978
¹⁴⁵ Nd	0.999	0.997	0.996	1.000	1.003
¹⁴⁶ Nd	1.022	1.015	1.017	1.013	1.021
¹⁴⁸ Nd	1.019	1.014	1.018	1.014	1.019
¹⁵⁰ Nd	1.009	1.020	1.014	1.013	1.027
¹⁵⁴ Eu	1.246	1.168	1.177	1.132	1.181

Table B

MCS C/E for Takahama-3 SF97 fuel rod samples.

Sample ID	SF97-2	SF97-3	SF97-4	SF97-5	SF97-6
Burnup (GWd/t)	30.73	42.16	47.03	47.25	40.79
²³⁴ U	1.088	1.053	1.048	1.048	1.072
²³⁵ U	0.999	1.001	0.996	0.996	1.005
²³⁶ U	0.999	1.001	0.998	0.998	0.994
²³⁸ U	0.999	0.999	0.999	0.999	0.999
²³⁷ Np	1.006	1.016	0.993	0.993	0.978
²³⁸ Pu	1.011	1.004	0.986	0.986	1.012
²³⁹ Pu	1.037	1.035	1.020	1.020	1.042
²⁴⁰ Pu	1.063	1.084	1.065	1.065	1.078
²⁴¹ Pu	1.006	1.004	0.998	0.998	1.008
²⁴² Pu	1.023	1.010	1.004	1.004	1.009
²⁴¹ Am	1.146	1.075	0.957	0.957	1.104
²⁴³ Am	0.994	0.974	0.956	0.956	0.996
²⁴² Cm	1.185	1.242	1.293	1.293	1.245
²⁴³ Cm	0.902	0.986	0.996	0.996	0.972
²⁴⁴ Cm	1.019	1.008	0.980	0.980	1.031
²⁴⁵ Cm	1.066	1.108	1.059	1.059	1.150
²⁴⁶ Cm	0.316	0.816	0.857	0.857	0.833
¹⁰⁶ Ru	1.010	1.052	1.161	1.946	0.913
¹³⁴ Cs	0.907	0.949	0.983	0.979	0.961
¹³⁷ Cs	0.973	0.973	0.983	0.980	0.972
¹⁴⁴ Ce	0.940	1.038	1.128	1.147	1.018
¹⁴³ Nd	0.984	0.983	0.987	0.978	0.983
¹⁴⁴ Nd	0.990	0.956	0.944	0.937	0.954
¹⁴⁵ Nd	1.008	1.006	1.011	1.010	1.005
¹⁴⁶ Nd	1.004	1.000	1.000	0.999	1.001
¹⁴⁸ Nd	1.018	1.017	1.018	1.019	1.018
¹⁵⁰ Nd	1.025	1.025	1.024	1.025	1.029
¹⁵⁴ Eu	1.093	1.094	1.080	1.068	1.118
¹⁴⁷ Sm	1.035	1.017	1.003	1.007	1.023
¹⁴⁸ Sm	1.014	0.997	0.983	0.973	1.009
¹⁴⁹ Sm	0.922	0.980	1.052	1.062	0.976
¹⁵⁰ Sm	1.070	1.065	1.060	1.052	1.074
¹⁵¹ Sm	1.002	1.000	0.979	0.944	1.007
¹⁵² Sm	1.060	1.048	1.043	1.048	1.047
¹⁵⁴ Sm	1.083	1.106	1.108	1.098	1.107

Table C MCS C/E for Takahama-3 SF96 fuel rod samples.

		-		
Sample ID	SF96-2	SF96-3	SF96-4	SF96-5
Burnup (GWd/t)	16.44	28.20	28.91	24.19
²³⁴ U	0.992	0.985	0.973	0.988
²³⁵ U	1.010	1.028	1.016	1.011
²³⁶ U	0.948	0.960	0.962	0.959
²³⁸ U	1.000	1.000	1.000	1.000
²³⁷ Np	1.401	1.557	1.520	1.447
²³⁸ Pu	0.972	0.965	0.965	0.993
²³⁹ Pu	1.038	1.032	1.018	1.029
²⁴⁰ Pu	1.011	1.006	1.005	1.013
²⁴¹ Pu	1.038	1.021	1.016	1.037
²⁴² Pu	1.027	1.001	1.015	1.038
²⁴¹ Am	1.470	1.277	1.090	1.463
²⁴³ Am	1.028	0.990	0.986	1.039
²⁴² Cm	0.939	0.897	0.913	0.944
²⁴⁴ Cm	0.994	0.982	0.982	1.043
¹⁰⁶ Ru	1.453	1.289	1.477	1.066
¹³⁴ Cs	0.923	0.976	0.981	0.977
¹³⁷ Cs	0.997	1.009	1.015	1.026
¹⁴⁴ Ce	0.966	1.068	1.097	0.997
¹⁴³ Nd	0.946	0.948	0.961	0.941
¹⁴⁴ Nd	0.939	0.881	0.905	0.919
¹⁴⁵ Nd	0.971	0.971	0.988	0.968
¹⁴⁶ Nd	0.962	0.957	0.973	0.959
¹⁴⁸ Nd	0.980	0.978	0.993	0.980
¹⁵⁰ Nd	0.984	0.981	0.996	0.987
¹⁵⁴ Eu	1.219	1.116	1.182	1.217

References

- L.M. Fensin, J.S. Hendricks, S. Anghaie, The enhancements and testing for the MCNPX 2.6.0 depletion capability, Nucl. Technol. 170 (2010) 68.
- [2] G.G. Davidson, T.M. Pandya, S.R. Johnson, et al., Nuclide depletion capabilities in the SHIFT Monte Carlo code, Ann. Nucl. Energy 114 (2018) 259.
- [3] H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2) (2012) 161.
- [4] J. Leppanen, M. Pusa, T. Viitanen, et al., The serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142.
- [5] K. Okumura, T. Mori, M. Nakagawa, K. Kaneko, Validation of a continuousenergy Monte Carlo code MVP-BURN and its application to analysis of post irradiation experiment, J. Nucl. Sci. Technol. 37 (2) (2000) 128.
- [6] D. She, Y. Liu, K. Wang, G. Yu, B. Forget, P.K. Romano, K. Smith, Development of burnup method and capabilities in Monte Carlo code RMC, Ann. Nucl. Energy 51 (2013) 289.
- [7] H. Lee, Development of a New Monte Carlo Code for Large-Scale Power Reactor Analysis (PhD thesis), Ulsan National Institute of Science and Technology, Ulsan, 2019.
- [8] F. Michel-Sendis, I. Gauld, J.S. Martinez, SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operations data, Ann. Nucl. Energy 110 (2017) 779.
- [9] SFCOMPO 2.0, Spent Fuel Composition Database, Organization for Economic Cooperation and Development, Nuclear Energy Agency, 2017. http://www. oecd-nea.org/sfcompo.
- [10] Y. Nakahara, K. Suyama, J. Inagawa, R. Nagaishi, S. Kurosawa, N. Kohno, M. Onuki, H. Mochizuki, Nuclide composition benchmark data set for verifying burnup codes on spent light water reactor fuels, Nucl. Technol. 137 (2) (2002) 111.
- [11] J. Jang, W. Kim, S. Jeong, E. Jeong, J. Park, M. Lemaire, H. Lee, Y. Jo, P. Zhang, D. Lee, Validation of UNIST Monte Carlo code MCS for criticality safety analysis of PWR spent fuel pool and storage cask, Ann. Nucl. Energy 114 (2018) 495.
- [12] H. Lee, W. Kim, P. Zhang, A. Khassenov, J. Park, J. Yu, S. Choi, H.W. Lee, D. Lee, Preliminary Simulation Results of BEAVRS Three-Dimensional Cycle 1 Wholecore Depletion by UNIST Monte Carlo Code MCS. M&C2017, 2017. Jeju, Korea, April 16-20.
- [13] Lee H, Kong C, Lee DJ. Status of Monte Carlo code development at UNIST. In: Proceedings of the PHYSOR Conference; 2014 Sep 28 – Oct 3; Kyoto: Japan. ([USB]).
- [14] Lee H., Kim W., Zhang P., Khassenov A., Jo Y., Lee DJ. Development status of Monte Carlo code at UNIST. In: Proceedings of the Korean Nuclear Society Spring Meeting; 2016 May 11-13; Jeju: Korea. ([USB])
- [15] M. Lemaire, H. Lee, B. Ebiwonjumi, C. Kong, W. Kim, Y. Jo, J. Park, D. Lee, Verification of photon transport capability of UNIST Monte Carlo code MCS, Comput. Phys. Commun. 231 (2018) 1.
- [16] J. Yu, H. Lee, H. Kim, P. Zhang, D. Lee, Preliminary coupling of the thermal/ hydraulic solvers in the Monte Carlo code MCS for practical LWR analysis, Ann. Nucl. Energy 118 (2018) 317.
- [17] J. Yu, H. Lee, M. Lemaire, et al., MCS based neutronics/thermal-hydraulics/fuel-

performance coupling with CTF and FRAPCON, Comput. Phys. Commun. (2019), https://doi.org/10.1016/j.cpc.2019.01.001.

- [18] M. Lemaire, H. Lee, N. Tak, H.C. Lee, D. Lee, Multi-physics steady-state analysis of OECD/NEA modular high temperature gas-cooled reactor MHTGR-350, J. Nucl. Sci. Technol. 54 (6) (2017) 668.
- [19] Vutheam Dos, Hyunsuk Lee, Jiwon Choe, Ho Cheol Shin, Hwan Soo Lee, Deokjung Lee*, Validation of UNIST MCS Monte Carlo Code System for OPR-1000, Transaction of KNS Spring Meeting, Jeju, Korea, 2018. May 16-18.
- [20] T.Q. Tran, H. Lee, J. Choe, Y. Jo, S. Choi, H.S. Lee, H.C. Shin, D. Lee, Monte Carlo wholecore depletion analysis of yonggwang unit 3 cycles 1 and 2, 2018, in: 6th International Conference on Nuclear and Renewable Energy Resources, NURER, Jeju, Korea, 2018. Sep. 30 - Oct. 3 (2018).
- [21] B. Ebiwonjumi, H. Lee, J. Choe, D. Lee, H.C. Shin, MCS Analysis of Westinghouse 3- Loop PWR Multi-Cycle Operation, Korean Nuclear Society Fall Meeting, Yeosu, Korea, 2018. October 25 – 26.
- [22] Tung Dong Cao Nguyen, Hyunsuk Lee, Deokjung Lee, VERA Solutions by UNIST MC Code MCS, KNS Spring Meeting, Jeju, Korea, 2018. May 16-18.
 [23] Tung Dong Cao Nguyen, Hyunsuk Lee, Jiwon Choe, Matthieu Lemaire,
- [23] Tung Dong Cao Nguyen, Hyunsuk Lee, Jiwon Choe, Matthieu Lemaire, Deokjung Lee, APR-1400 Whole-Core Depletion Analysis with MCS. M&C2019, 2019. Oregon, USA, August 25-29.
- [24] A. Khassenov, Generation of Windowed Multipole Library for On-The-Fly Doppler Broadening in UNIST In-House Monte Carlo Code (master's thesis), Ulsan National Institute of Science and Technology, Ulsan, 2018.
- [25] J.A. Wash, et al., On-the-fly Doppler broadening of unresolved resonance region cross sections, Prog. Nucl. Energy 101 (2017) 444.
- [26] Hyunsuk Lee, Deokjung Lee*, On-The-Fly Interpolation for Thermal Scattering in MCS, Transaction of KNS Spring Meeting, Jeju, Korea, 2018. May 16-18.
- [27] M. Pusa, Rational approximations to the matrix exponential in burnup calculations, Nucl. Sci. Eng. 169 (2) (2011) 155.
- [28] D. Lee, J. Rhodes, K. Smith, Quadratic depletion method for gadolinium

isotopes in CASMO-5, Nucl. Sci. Eng. 174 (2013) 79.

- [29] ASTM, Standard test method for atom percent fission in uranium and plutonium fuel (Neodymium-148 Method), Annu. Book ASTM (Am. Soc. Test. Mater.) Stand. 12 (1995) 91, 02(E321-79).
- [30] OECD/NEA, State of the Art Report on Spent Nuclear Fuel Assay Data for Isotopic Validation, Organization for Economic Cooperation and Development, Nuclear Energy Agency, Nuclear Science Committee, Working Party on Nuclear Criticality Safety, 2011. Technical Report NEA/NSC/WPNCS/DOC(2011) 5.
- [31] G. Ilas, I.C. Gauld, G. Radulescu, Validation of new depletion capabilities and ENDF/B-VII data libraries in SCALE, Ann. Nucl. Energy 46 (2012) 43.
- [32] T. Yamamoto, T. Sakai, D. Iwahashi, Analysis of measured isotopic compositions by CASMO5 coupled with a JENDL-4.0 library for irradiated fuel of light water reactors, J. Nucl. Sci. Technol. 54 (3) (2017) 391.
- [33] I.C. Gauld, G. Ilas, G. Radulescu, Uncertainties in Predicted Isotopic Compositions for High Burnup PWR Spent Nuclear Fuel, US Nuclear Regulatory Commission, 2011. Technical Report NUREG/CR-7012.
- [34] H.J. Park, D.H. Lee, B.K. Jeon, H.J. Shim, Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD, Nucl. Eng. Technol. 50 (2018) 1043.
- [35] M. Tohjoh, T. Endo, M. Watanabe, A. Yamamoto, Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations, Ann. Nucl. Energy 33 (2006) 1424.
- [36] M.D. DeHart, M.C. Brady, C.V. Parks, OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results, Oak Ridge National Laboratory, 1996. Technical Report ORNL/TM-6901.
- [37] J.S. Martinez, O. Cabellos, C.J. Diez, F. Gilfillan, A. Barbas, Isotopic prediction calculation methodologies: application to Vandellos-II reactor cycles 7-11, in: CD Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering M&C 2011, 2011.