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a b s t r a c t 

Reservoir computing (RC) is a brain-inspired computing framework that employs a transient dynamical 

system whose reaction to an input signal is transformed to a target output. One of the central problems 

in RC is to find a reliable reservoir with a large criticality, since computing performance of a reservoir is 

maximized near the phase transition. In this work, we propose a continuous reservoir that utilizes tran- 

sient dynamics of coupled chaotic oscillators in a critical regime where sudden amplitude death occurs. 

This “explosive death” not only brings the system a large criticality which provides a variety of orbits for 

computing, but also stabilizes them which otherwise diverge soon in chaotic units. The proposed frame- 

work shows better results in tasks for signal reconstructions than RC based on explosive synchronization 

of regular phase oscillators. We also show that the information capacity of the reservoirs can be used as 

a predictive measure for computational capability of a reservoir at a critical point. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, reservoir computing has emerged as a promising com-

utational framework for utilizing a dynamical system for compu-

ation. While an input stream perturbs the transient intrinsic dy-

amics of a medium(“reservoir”), a readout layer is trained to ex-

ract features out of such perturbations to approximate a target

utput. Due to its complex high-dimensional dynamics, the reser-

oir serves as a vast repertoire of nonlinear transformations that

an be exploited by the readout. The major advantage of reser-

oir computing is their simplicity in training process compared to

ther neural networks. Another advantage is their universality in

hat they can be realized using physical systems, substrates, and

evices [12,14,34] . 

There is the hypothesis that a system can exhibit maximal

omputational power at a phase transition between ordered and

haotic behavioral regimes [18,19] . It has been observed that the

rain operates near a critical state in order to adapt to a great va-

iety of inputs and maximize information capacity [3–5] . Perturba-

ions occurring in a critical regime neither spread nor die out too

uickly, providing the most flexibility to the system [10,16] . This

oncept of “computation at the edge of chaos” may also have an

mplication to material computation, whereby a material has the

ost exploitable properties [27] . More extensive review on this

ubject can be found in Munoz [28] . 
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In RC, designing a reservoir which has a large criticality is im-

ortant to perform complex tasks. In case of a reservoir based on

ontinuous dynamical systems, one can create criticality by tun-

ng intrinsic parameters so that the reservoir operates at a bifur-

ation point across which the dimension of the attractor abruptly

eclines. We call such system a critical reservoir. A system of cou-

led oscillator exhibits a first order transition from incoherent

tate to synchronized state that occurs under a specific relation

etween the coupling strength and connectivity, which is called

xplosive synchronization. In the previous work [7] , we showed

hat a reservoir of coupled Kuramoto oscillators near explosive

ynchronization forms a critical reservoir and performs excellent

omputations. 

Amplitude death(AD) is another way to create a criticality in

oupled oscillatory units. It indicates complete cessation of oscil-

ations induced from change in intrinsic parameters of the system.

he occurrence of AD has been found in the case of chemical re-

ctions [8,11] , neuronal systems [13,29] and coupled laser systems

15,37] . It has been also reported that AD can occur abruptly in a

ystem of coupled nonlinear oscillators [21,35,36,39] . Such simul-

aneous cessation of oscillations is the first order transition to AD

nd called “explosive death”(ED). 

In this work, we focus on computing ability of chaotic systems

ear a criticality created in the form of ED. There have been many

esearches on chaos computing [2,22] , even in the context of RC

17,23–25] ; Chaos computing takes advantage of an infinite num-

er of orbits/patterns inherent in the attractor to be used for par-

icular computational tasks. It also utilizes the sensitivity to initial

onditions of chaotic systems to perform rapid switching between

https://doi.org/10.1016/j.chaos.2020.110131
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110131&domain=pdf
mailto:pwkim@unist.ac.kr
https://doi.org/10.1016/j.chaos.2020.110131
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Fig. 1. Schematic of RC of this work. The nodes in the reservoir are chaotic os- 

cillators and their internal dynamics is aroused by the input signal u(t). Only the 

weight matrix W connecting the reservoir state R ( t ) needs to be trained to generate 

a desired output v ( t ). 
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computational modes. However, chaos computing often has a con-

trol problem to stabilize particular orbit. 

Our major goal is to construct a chaos based reservoir with a

large criticality induced from explosive death. We focus on how to

create an easily-adjustable criticality in reservoirs, since, as we will

see in Section 4 , a criticality provides a reliable criterion to choose

the parameter values for maximized computing performance. We

use the coupled chaotic oscillators and adjust a coupling strength

so that they remain near the stage of ED. A reservoir in such crit-

ical regime provides a large variety of orbits in transient dynamics

which can be used in computational tasks. Different from previous

chaotic computing methods, the reservoirs still remain in a regular

regime during computation, but close enough to chaos to enjoy its

richness. We also investigate how such quenched chaos enhances

the criticality in RC. To show the contribution of chaos in critical-

ity, we compare the computation performance of a chaotic critical

reservoir with a non-chaotic critical reservoir. 

2. Model 

2.1. Setup for reservoir computing 

The scheme for RC of chaotic oscillators is illustrated in Fig. 1 . 

The setup is divided into three parts: an input layer, a reser-

voir, and a readout layer. The reservoir in the middle consists of

interconnected nodes of chaotic oscillators, some of which are also

connected to the input signal. The nodes in the reservoir evolves

dynamically in reaction to the temporal input signals u ( t ) and their

collective states in the reservoir form the reservoir state R ( t ). The

role of the reservoir can be viewed as a nonlinear transforma-

tion of the input u ( t ) to a space represented by R ( t ). The third

part of RC is the readout layer where the training process is car-

ried out. In the readout layer, a set of sampled reservoir states

R k = R (t k ) , k = 1 , 2 , . . . are used to generate the final desired out-

put v ( t ) through a linear transformation as 

v (t) = W R (1)

where R is the reservoir state vector which consists of a tempo-

ral collection of R k , and W is a weight matrix to be found in the

training process. Since training the RC system only involves solv-

ing a linear Eq. (1) for the weight matrix W , the training cost can

be substantially reduced compared to conventional neural network

approaches. 
.2. Reservoir of nonidentical chaotic elements 

We consider a reservoir that consists of N nodes of Lorenz sys-

ems coupled via a mean-field diffusion as, 

1 

w i 

dx i 
dt 

= 10(y i − x i ) + K(Q ̄x − x i ) 

1 

w i 

dy i 
dt 

= −x i z i + ρx i − y i 

1 

w i 

dz i 
dt 

= x i y i −
8 

3 

z i 

(2)

here i = 1 , . . . , N is the index of the oscillators and x̄ = 

1 
N 

∑ N 
i =1 x i 

s the mean field of the state variable x . The parameter K is the

trength of coupling and 0 ≤ Q ≤ 1, is the intensity of the mean

eld. Here we use Q = 0 . 7 , following [35] . 

Each single node exactly coincides with the conventional Lorenz

ystem if K = 0 with w i = 1 . If the frequencies of the nodes w i are

dentical, then the system in Eq. (2) undergoes ED upon a change

f the parameters [35] . In the following sections, we confirm that

D persistently occurs in Eq. (2) with a suitable distribution of the

requency w i . When running the system in Eq. (2) as a reservoir,

e therefore set the parameters for the system to be posed in a

ritical regime where the phase transition occurs. The adjustment

f the parameters according to an order parameter will be dis-

ussed in Section 3 . 

.3. Readout and training 

The chaotic reservoirs are applied to supervised tasks of

hich training data comes in the form of ( u, v ) where

 (t) = (u 1 (t ) , . . . , u p (t )) ∈ R 

p is an input signal and v (t) =
(v 1 (t) , . . . , v q (t)) ∈ R 

q is a target output. We assign p nodes of the

eservoir as input nodes. Before the training process starts, we run

he network until it reaches an amplitude death state. Then the

nput stream u ( t ) is fed to the reservoir, in a way that the value

f x ( t ) in the input nodes are perturbed by adding u ( t ). All evolu-

ionary activities of the nodes are measured to compute the output

unction f out = ( f 1 out , . . . , f 
q 
out ) ∈ R 

q . 

We construct a linear output function f that maps the reser-

oir state R ( t ) to a desired output v ( t ) as in the Eq. (1) . In the

eadout process, it is reasonable to use the past values of the

odes as well as the current ones, to exploit the rich dynamics

f the chaotic reservoirs. Here we set the output function f to take

ast s sampled values of the frequency x ′ 
i 
= 

dx i 
dt 

at discrete times

 − �t, t − 2�t, . . . , t − s �t as an internal state of the reservoir. 

We define the output function f out = ( f 1 out , . . . , f 
q 
out ) ∈ R 

q of ( s ,

t )-type as 

f l out (t) = 

N ∑ 

i =1 

s ∑ 

j=1 

w 

l 
i, j x 

′ 
i (t − ( j − 1)�t) , l = 1 , . . . , q (3)

ote that Eq. (3) essentially implements the linear readout process

f RC in Eq. (1) . Here w 

l 
i, j 

are weights to be determined from the

raining process for each computational task, so that f out ( t ) is as

lose to v ( t ) as possible. For example, if the output data is a time

eries v (t 1 ) , v (t 2 ) , . . . , v (t M 

) , the mean-square error 

∑ M 

i =1 ‖ v (t i ) − f out (t i ) ‖ 

2 

∑ M 

i =1 ‖ v (t i ) ‖ 

2 
(4)

an be used to determine the weights w 

l 
i, j 

. Note that minimizing

he error in Eq. (4) with respect to the weights w 

l 
i, j 

in Eq. (3) cor-

esponds to a linear least squares problem. 
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Fig. 2. (a) The phase diagram of order parameter r var according to the coupling strength K and Lorenz parameter ρ . The dotted vertical line is drawn at ρ = 24 to denote 

separation of non-chaotic dynamics(left) and chaotic dynamics(right) in the case K = 0 . (b) Cross-sectional figures of two order parameters, r var and A , according to K with 

ρ = 28 fixed. (c) Cross-sectional figures of two order parameters, r var and A , according to ρ with K = 2 . 2 fixed. 
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. Creating a criticality by the explosive death 

Benefit of using the coupled chaotic systems in Eq. (2) as a

eservoir is that one can easily create a large criticality with a first

rder phase transition in the system. Across a critical point of the

oupling force, the compound oscillatory motions of the system

ollapse into an equilibrium point. This fixed equilibrium state near

 critical point is used as the ground state for reservoir computing,

here the system always returns to after every computation, eras-

ng unnecessary information from previous evaluations and prepar-

ng for the next inputs. 

To look for a possible phase transition in Eq. (2) , we define an

rder parameter r var in terms of the variation of amplitudes, as 

 var = 

1 

N 

N ∑ 

j=1 

exp (−c var j ) , c > 0 (5)

here var j is the temporal variance of the frequency x ′ 
j 
(t) [7] .

his is a measure for desynchrony that sensitively shows a degree

f deviation of oscillators from a steady frequency. In the ground

tate, the temporal variance of the frequency should be kept low

or reliable computations. Note that, for each oscillator, the tem-

oral variance of the frequency becomes 0 if a strong coupling

trength holds oscillators in a phase-locked state, keeping their

ommon frequency steady. We also use another order parameter

ased on the normalized average amplitude as 

 (K) = 

a (K) 

a (0) 
, a (K) = 

∑ N 
i =1 (〈 x i,max 〉 t − 〈 x i,min 〉 t ) 

N 

, (6)

hich is widely used for chaotic oscillators [30,31,35] . Note that

 (K) = 0 implies a complete cessation of oscillations and A (K) = 1

mplies nondepressed chaotic oscillations. 

If the frequencies of nodes in Eq. (2) are identical, then the

ystem exhibits explosive death, the discontinuous transition from

he oscillatory state to the completely quenched state [35] . Indeed,

q. (2) with nonidentical natural frequencies still exhibits the same

henomena. Fig. 2 (a) is the phase diagram of the order parame-

er r var in the ρ − K parameter plane. We used N = 100 oscilla-

ors whose natural frequencies follow the uniform distribution in

1,1.3]. The dynamical states of system is obtained by backward

ontinuation from a large value of K [35] . The order parameter

 var was averaged between t = [390 0 , 40 0 0] . The diagonal line in

ig. 2 (a) clearly splits the parameter plane according to the value

f r var , indicating that the discontinuous phase transition occurs

ith respect to both ρ and K . The graphs in Fig. 2 (b) and (c) in-

icate cross-sectional figures of two order parameters in K and ρ
irections, respectively. It is verified that both of the order param-
ters r var and A exhibit extremely abrupt jump at the same critical

oint. 

. Results 

.1. Numerical tests 

In the following numerical examples to test the learning abil-

ty of the oscillator networks, we use the (10 , 0 . 1) −type readout.

hat is, the output function f out at t is obtained from 10 previous

ampled values of the oscillator frequencies x ′ 
i 
(t) , . . . , x ′ 

i 
(t − 0 . 9) in

q. (3) . 

We set up two types of tasks, inferring missing variables(Task

 and Task 2) and filtering signals(Task 3), all of which require the

resence of long-term memory for proper execution. In Task 1, RC

s used to reconstruct evolutionary value of the variable y ( t ) (or

 ( t )) of the Rössler system 

dx 

dt 
= −y − z 

dy 

dt 
= x + ay 

dz 

d t 
= b + z(x − c) 

(7) 

rom observation of a single variable x ( t ). That is, u (t) = x (t) is the

nput signal and v (t) = y (t) is the target output of RC in the task.

e use a = 0 . 2 , b = 0 . 2 and c = 5 . 7 which are commonly used for

tudy of chaotic behavior [20] . Similarly, Task 2 is to infer missing

ariables of the Chua’s circuit 

dx 

dt 
= α(y − φ(x )) 

dy 

dt 
= x − y + z 

dz 

d t 
= −βy 

(8) 

here φ(x ) = m 1 x + 1 / 2(m 0 − m 1 ) ( | x + 1 | − | x − 1 | ) . RC is trained

o reconstruct a desired output v (t) = y (t) from the input u (t) =
 (t) . The parameters are set as α = 15 . 6 , m 0 = −8 / 7 , m 1 = −5 / 7

nd β = 28 which lead to chaotic behavior. 

Task 3 is to learn to generate the filtered scalar output 

 (t) = 

1 

m 

m ∑ 

k =1 

(
au (t − k ) + bu (t − k ) 2 + cu (t − k ) 3 

)
(9) 

hich is determined from the past m values of an input stream

 ( t ). Here a, b and c are some nonzero parameters. If m = 1 , the
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Fig. 3. Test errors according to the coupling K and lorenz system parameter ρ . (a) inferring a missing variable of the Rössler system. (b) inferring a missing variable of the 

Chua’s circuit. (c) filtering the Mackey-Glass equation. 
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task is simply to implement a polynomial function of the cur-

rent value of the input. The task becomes more challenging as m

increases, requiring long-term memory to evaluate averaged val-

ues. In our tasks, we use the parameters m = 20 , a = 1 , b = 3 and

c = 5 , and have the input u ( t ) generated from the Mackey-Glass

equation 

dx 

dt 
= β

x (t − τ ) 

1 + x (t − τ ) n 
− γ x, β = 0 . 2 , γ = 0 . 1 , 

τ = 17 and n = 10 . 

(10)

which provides standard benchmark task for chaotic series han-

dling [6] . 

In each task, the continuous input signal u ( t ) and the tar-

get signal v ( t ) are generated for t ∈ [0, 60 0 0]. To make sure

that the system is positioned in the reliable ground state, we

skip first 10 0 0 time steps of the output. The training process

is applied to match f out to v ( t ) over the 40 0 0 discrete time

steps, t = 1001 , 1002 , . . . , 5000 . That is, the readout weights w 

l 
i, j 

in

Eq. (3) are determined to minimize the relative error in Eq. (4) .

Then we evaluate the relative error between f out to v ( t ) as the

performance measure over 10 0 0 discrete sampled time steps for

t ∈ (50 0 0, 60 0 0]. Through the three tasks, we again use N = 100

oscillators and the uniform distribution in [1,1.3] for their natural

frequency w i . 

Fig. 3 depicts the errors in three tasks with respect the pa-

rameters K and ρ . One can see in each task that minimum er-

ror occurs along a diagonal line. The line forms a clear border

across which the error jumps from the low error regime (red) to

high error regime (yellow). It should be noted that the three lines

are identical and the same as the aligned critical points in Figure

2.(a) where the explosive death of the nodes occurs. This assures

that the computational performance of the reservoirs is maximized

near the first order phase transition. 

As a final remark, it should be pointed out that the reservoir

in Eq. (2) provides decent performance as a learning algorithm

compared to other types of RC, for example, an echo state net-

work(ESN). We applied a standard ESN in Lukoševi ̌cius et al. [26] to

the above three tasks for comparison. The parameters ρ and K

in Eq. (2) are chosen on the diagonal line in Fig. 3 so that the

reservoir enjoys a criticality at the border between two phases. It

turned out that the reservoir in Eq. (2) shows competitive(Task 1)

or better(Task 2 and 3) results as compared to a ESN with 10 0 0

nodes. 
.2. Information capacity of regular and chaotic reservoirs 

In the previous work [7] , a reservoir that consists of regular

hase oscillators was presented as 

′ 
i = ω i + 

λ| w i | 
k i 

N ∑ 

j=1 

A i j sin (θ j − θi ) , i = 1 , . . . , N, (11)

here λ is the coupling strength of oscillators and A ij is the entry

f the adjacency matrix of the network. Here A i j = 1 if i 	 = j , oth-

rwise 0. The model in Eq. (11) is known to have a simultaneous

ynchronization at a certain coupling value λ [38] . Being used as

 reservoir, it shows great performance improvement across such

ritical point. 

This section investigates how chaos enhances a criticality in RC.

e compare the performance of the forementioned two critical

eservoirs, chaotic one in Eq. (2) and regular one in Eq. (11) , when

oth are being poised at the first order phase transition. From

ere on, we call the former QC(quenched chaos) and the latter

S(explosive synchronization). When comparing the performance

f these reservoirs, it is necessary to consider that the number of

quations required to implement a single node is different: if they

ave the same number of nodes, the computational cost for the

eservoir of Eq. (2) is greater than that of the reservoir of Eq. (11) ,

oughly, by a factor of three. 

Fig. 4 (a)–(c) depict the errors of QC and ES in task 1 to 3, re-

pectively, according to the number of nodes used for the reser-

oirs. It is observed that the errors continuously decrease and

each the minimum at 150 nodes or less. In all three tasks, the

rror of QC is at least 10 0 0 times smaller than that of ES. This indi-

ates that QC excels by far ES, even when considering the foremen-

ioned difference in computation complexity between two reser-

oirs. 

One of possible explanations on superiority of the chaotic reser-

oir is that the computing capability of critical reservoirs may de-

end on the collapsed dimension of attractors of reservoirs across

he critical point. That is, the effect of criticality on computing per-

ormance may be related to how much reduction occurs in the di-

ension of the synchronization manifold at the phase transition.

ne can guess that the collapsed dimension of Eq. (2) at the ex-

losive death is much greater than that of Eq. (11) , from the fact

hat an attractor of a single Lorenz system has a greater Haus-

orff dimension( ~ 2.06), compared to one dimensional attractor

f a phase oscillator in Eq. (11) . Computing the dimension of an

ttractor of a large coupled chaotic system is, however, extremely

ime-consuming and not practical. 
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Fig. 4. Comparison of test errors of QC and ES with respect to number of nodes. (a) inferring a missing variable of the Rössler system. (b) inferring a missing variable of the 

Chua’s circuit. (c) filtering the Mackey-Glass equation . 

Fig. 5. Total information capacity of QC and ES with respect to number of oscilla- 

tors. The most of the parameters for evaluation are from [9] . 
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To overcome such difficulty in analyzing reservoir’s internal

tructure, we rather adopt a measure that focuses on external

unctional capacity of systems. Here we use the total information

apacity which is developed to compute the capacity of any in-

ut driven dynamical systems [9] . The total information capacity,

oughly put, is defined as the assessment of reconstructing the set

f orthonormal functions which is a basis of the fading memory

ilbert space. We refer the reader to [9] for more details. 

Fig. 5 compares the total information capacity of QC and ES. We

onfirm that the capacity of QC continuously increases even near

50 nodes then decrease in tendency, while ES only increases till

bout 50 nodes, which agrees with the results of the numerical

asks in Fig. 4 . 

. Discussion 

In this work, we showed that the coupled chaotic systems can

e used for efficient reservoir computing. The chaotic reservoirs

an create a large criticality at the first order phase transition to

reate a ground state for computation. It notices in several com-

uting tasks that the chaotic reservoirs excel the regular reservoirs,

hich is also confirmed from comparing their information capac-

ty. 
The results imply that using chaotic nodes is more beneficial in

onstructing reservoirs. This finding is important in several aspects.

irst of all, chaos is widely observed in neuronal systems, both ex-

erimentally and theoretically [1] . We confirmed that such ubiq-

ity of chaos can be justified from the perspective of computing

erformance. That is, as long as it is properly quenched in the crit-

cal regime, chaos is an goal worth pursuing rather than an unde-

irable state to be avoided. Chaos computing is the paradigm that

xploits the controlled richness of nonlinear dynamics to do flex-

ble computations. This work shows another theoretical direction

f chaos computing different from the approach using chaotic ele-

ents to emulate different logic gates [32,33] . Basic understanding

f a role of criticality in regular and chaotic reservoirs can be ex-

ected to shed light on how information is processed in quenched

oupled nonlinear systems, potentially leading to proposition of a

road range of reservoirs. 
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