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C O R O N A V I R U S

Immunophenotyping of COVID-19 and influenza 
highlights the role of type I interferons in development 
of severe COVID-19
Jeong Seok Lee1*, Seongwan Park2*, Hye Won Jeong3*, Jin Young Ahn4*, Seong Jin Choi1, 
Hoyoung Lee1, Baekgyu Choi2, Su Kyung Nam2, Moa Sa1,5, Ji-Soo Kwon1,6, Su Jin Jeong4,  
Heung Kyu Lee1,5, Sung Ho Park7, Su-Hyung Park1,5, Jun Yong Choi4†, Sung-Han Kim6†, 
Inkyung Jung2†, Eui-Cheol Shin1,5†

Although most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–infected individuals experience 
mild coronavirus disease 2019 (COVID-19), some patients suffer from severe COVID-19, which is accompanied by 
acute respiratory distress syndrome and systemic inflammation. To identify factors driving severe progression of 
COVID-19, we performed single-cell RNA sequencing using peripheral blood mononuclear cells (PBMCs) obtained 
from healthy donors, patients with mild or severe COVID-19, and patients with severe influenza. Patients with 
COVID-19 exhibited hyperinflammatory signatures across all types of cells among PBMCs, particularly up-regulation 
of the tumor necrosis factor/interleukin-1 (TNF/IL-1)–driven inflammatory response as compared with severe 
influenza. In classical monocytes from patients with severe COVID-19, type I interferon (IFN) response coexisted 
with the TNF/IL-1–driven inflammation, and this was not seen in patients with milder COVID-19. We documented 
type I IFN–driven inflammatory features in patients with severe influenza as well. On the basis of this, we propose 
that the type I IFN response plays a pivotal role in exacerbating inflammation in severe COVID-19.

INTRODUCTION
Currently, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which causes coronavirus disease 2019 (COVID-19), is spread-
ing globally (1, 2), and the World Health Organization has declared 
it a pandemic. As of 2 June 2020, more than 6.1 million confirmed cases 
and more than 376,000 deaths have been reported worldwide (3).

SARS-CoV-2 infection usually results in a mild disease course 
with spontaneous resolution in the majority of infected individuals 
(4). However, some patients, particularly elderly patients, develop severe 
COVID-19 infection that requires intensive care with mechanical 
ventilation (4, 5). The mortality rate for COVID-19 in Wuhan, China 
is estimated to be 1.4% (5). Although this rate is lower than that of 
severe acute respiratory syndrome (SARS) and Middle East respiratory 
syndrome, which are caused by other human pathogenic corona-
viruses (6), it is much higher than that of influenza, a common re-
spiratory viral disease requiring hospitalization and intensive care 
in severe cases.

In severe cases of COVID-19, a hyperinflammatory response, also 
called a cytokine storm, has been observed and is suspected of causing 
the detrimental progression of COVID-19 (7). Circulating levels of 
proinflammatory cytokines, including tumor necrosis factor (TNF) and 
interleukin-6 (IL-6), are increased in severe cases (8). Gene expression 

analyses have also shown that IL-1–related proinflammatory path-
ways are highly up-regulated in severe cases (9). In a murine model 
of SARS-CoV infection, a delayed but considerable type I interferon 
(IFN-I) response promotes the accumulation of monocytes-macrophages 
and the production of proinflammatory cytokines, resulting in lethal 
pneumonia with vascular leakage and impaired virus-specific T cell 
responses (10).

Immune dysfunction is also observed in patients with COVID-19. 
In severe cases, the absolute number of T cells is reduced (8, 11), and 
the T cells exhibit functional exhaustion with the expression of in-
hibitory receptors (12, 13). However, hyperactivation of T cells as 
reflected in the up-regulation of CD38, human leukocyte antigen 
(HLA)–DR, and cytotoxic molecules was also reported in a lethal case 
of COVID-19 (14). Immune dysfunction in patients with severe 
COVID-19 has been attributed to proinflammatory cytokines (15).

In the present study, we performed single-cell RNA sequencing 
(scRNA-seq) using peripheral blood mononuclear cells (PBMCs) to 
identify factors associated with the development of severe COVID-19 
infection. By comparing COVID-19 and severe influenza, we report 
that the TNF/IL-1–driven inflammatory response was dominant in 
COVID-19 across all types of cells among PBMCs, whereas the up- 
regulation of various IFN-stimulated genes (ISGs) was prominent in 
severe influenza. When we compared the immune responses from 
patients with mild and severe COVID-19 infections, we found that 
classical monocytes from severe COVID-19 exhibit IFN-I–driven 
signatures in addition to TNF/IL-1–driven inflammation.

RESULTS
Single-cell transcriptomes of PBMCs from patients 
with COVID-19 and influenza
PBMCs were collected from healthy donors (n = 4), hospitalized 
patients with severe influenza (n = 5), and patients with COVID-19 
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of varying clinical severity, including severe, mild, and asymptomatic 
(n = 8). PBMCs were obtained twice from three (the patients C3, 
C6, and C7) of the eight patients with COVID-19 at different time 
points during hospitalization. PBMC specimens from patients with 
COVID-19 were assigned to severe or mild COVID-19 groups ac-
cording to the National Early Warning Score (NEWS; mild < 5, 
severe ≥ 5) evaluated on the day of whole blood sampling (16). In 
NEWS scoring, respiratory rate, oxygen saturation, oxygen supplement, 
body temperature, systolic blood pressure, heart rate, and consciousness 
were evaluated (16). Severe influenza was defined when hospitaliza-
tion was required irrespective of NEWS score. Patients with severe 
influenza were enrolled from December 2015 to April 2016, before 
the emergence of COVID-19. The severe COVID-19 group was 
characterized by significantly lower lymphocyte count and higher 
serum level of C-reactive protein than the mild COVID-19 group 
on the day of blood sampling (fig. S1A). Multiplex real-time poly-
merase chain reaction (PCR) for N, RNA-dependent RNA poly-
merase (RdRP), and E genes of SARS-CoV-2 was performed, and 
there was no statistical difference in Ct values for all three genes 
between two groups (fig. S1B). Demographic information is provided 
with experimental batch of scRNA-seq in table S1 and clinical data 
in tables S2 and S3.

Using the 10× Genomics scRNA-seq platform, we analyzed a 
total of 59,572 cells in all patients after filtering the data with stringent 
high quality, yielding a mean of 6900 unique molecular identifiers 
(UMIs) per cell and detecting 1900 genes per cell on average (table S4). 
The transcriptome profiles of biological replicates (PBMC specimens 
in the same group) were highly reproducible (fig. S1C), ensuring the 
high quality of the scRNA-seq data generated in this study.

To examine the host immune responses in a cell type–specific 
manner, we subjected 59,572 cells to t-distributed stochastic neighbor 
embedding (tSNE) based on highly variable genes using the Seurat 
package (17) and identified 22 different clusters unbiased by patients 
or experimental batches of scRNA-seq (Fig. 1A and fig. S1D). These 
clusters were assigned to 13 different cell types based on well-known 
marker genes and two uncategorized clusters (Fig. 1, B and C, and 
table S5). In downstream analysis, we only focused on 11 different 
immune cell types, including immunoglobulin G− (IgG−) B cell, IgG+ 
B cell, effector memory (EM)–like CD4+ T cell, non–EM-like CD4+ 
T cell, EM-like CD8+ T cell, non–EM-like CD8+ T cell, natural killer 
(NK) cell, classical monocyte, intermediate monocyte, nonclassical 
monocyte, and dendritic cell (DC) after excluding platelets, red 
blood cells (RBCs), and two uncategorized clusters. The individual 
C8 (asymptomatic case) was also excluded due to a lack of repli-
cates. In hierarchical clustering, most transcriptome profiles from 
the same cell type tended to cluster together, followed by disease 
groups, suggesting that both immune cell type and disease biology, 
rather than technical artifacts, are the main drivers of the variable im-
mune transcriptome (fig. S1E).

As a feature of immunological changes, we investigated the relative 
proportions of immune cells among PBMCs in the disease groups 
compared with the healthy donor group (Fig. 1, D and E, and fig. S1F). 
Unlike the limited changes in mild COVID-19, significant changes 
were observed in both influenza and severe COVID-19 across mul-
tiple cell types among PBMCs. In severe COVID-19, the proportion 
of classical monocytes significantly increased whereas those of DCs, 
nonclassical monocytes, intermediate monocytes, NK cells, EM-like 
CD8+ T cells, and EM-like CD4+ T cells significantly decreased (Fig. 1E). 
In severe influenza, the proportion of classical monocytes signifi-

cantly increased whereas those of DCs, non–EM-like CD4+ T cells, 
EM-like CD4+ T cells, IgG+ B cells, and IgG− B cells significantly de-
creased. We validated the proportions of immune cell subsets from 
scRNA-seq by flow cytometry analysis. The relative proportions of 
total lymphocytes, B cells, CD4+ T cells, CD8+ T cells, NK cells, and 
total monocytes from scRNA-seq significantly correlated with those 
from flow cytometry analysis (fig. S1G).

Transcriptional signatures associated with COVID-19
To compare the effect of infection between diseases, we performed 
hierarchical clustering based on relative gene expression changes 
against the healthy donor group. Unexpectedly, all types of cells among 
PBMCs were clustered together according to the disease groups in-
stead of cell types (Fig. 2A). Further investigation of the variable genes 
based on K-means clustering supported COVID-19–specific up- or 
down-regulated gene expression patterns across all types of cells 
among PBMCs (fig. S2A). These results indicate that, in COVID-19, 
peripheral blood immune cells may be influenced by common in-
flammatory mediators regardless of cell type. Despite distinct tran-
scriptional signatures between COVID-19 and influenza, severe 
COVID-19 and influenza shared transcriptional signatures in all types 
of monocytes and DCs (black boxed region in Fig. 2A), possibly re-
flecting common mechanisms underlying the innate immune responses 
in severe influenza and severe COVID-19.

Next, we sought to identify relevant biological functions in 
disease- specific up- or down-regulated genes in terms of the Gene 
Ontology (GO) biological pathways. First, we combined both mild 
and severe COVID-19 as a COVID-19 group and identified disease- 
specific changes in genes for each cell type compared with the healthy 
donor group using model-based analysis of single-cell transcriptomics 
(MAST) (18). NFKB1, NFKB2, IRF1, and CXCR3 were specifically 
up-regulated in COVID-19, and CXCL10, STAT1, TLR4, and genes 
for class II HLA and immunoproteasome subunits were specifically 
up-regulated in influenza (table S6). TNF, TGFB1, IL1B, and IFNG 
were commonly up-regulated. When we directly compared COVID-19 
and influenza, NFKB1, NFKB2, and TNF were up-regulated in 
COVID-19, whereas STAT1, TLR4, and genes for immunoprotea-
some subunits were up-regulated in influenza. For each group of 
differentially expressed genes (DEGs), we identified the top 10 en-
riched GO biological pathways and collected them to demonstrate 
P value enrichment in each group of DEGs (Fig. 2B). Both distinct 
and common biological functions were identified as illustrated by 
inflammatory response genes being highly active in both COVID-19 
and influenza, but genes for transcription factors, including inflam-
matory factors (i.e., NFKB1/2 and STAT4), were up-regulated in 
COVID-19. In contrast, a limited response in genes associated with 
the IFN-I and IFN-II signaling pathways, T cell receptor pathways, 
and adaptive immune response was observed in COVID-19 compared 
with influenza. Such disease-specific gene expression patterns were 
exemplified at single-cell resolution by GBP1 (IFN-–mediated sig-
naling pathway) being specifically up-regulated in influenza, CREM 
(positive regulation of transcription) being specifically up-regulated 
in COVID-19, and CCL3 (inflammatory response) being commonly 
up-regulated (Fig. 2C and table S7).

We expanded our analysis in a cell type–specific manner by con-
ducting weighted gene correlation network analysis (WGCNA) (19) 
for the collected genes associated with Fig. 2B. We identified several 
modular expression patterns (Fig. 2D and table S8). In the COVID-19 
group, NFKB1/2, JUN, and TNF were modularized in CD8+ T and 
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NK cells (G6 and G7 in Fig. 2D), and IL1B, NFKBID, and OSM were 
modularized in all types of monocytes and DCs (G3 in Fig. 2D). In 
the influenza group, GBP1, TAP1, STAT1, IFITM3, OAS1, IRF3, 
and IFNG were modularized in all types of T cells and NK cells 

(G2 in Fig. 2D), and CXCL10 and TLR4 were modularized in all 
types of monocytes and DCs (G5 and part of G6 in Fig. 2D). Con-
sistently, the DEGs between COVID-19 and influenza were domi-
nant in CD8+ T cells and all types of monocytes (fig. S2B).

B cell, IgG−

B cell, IgG+

CD4+ T cell, EM-like
CD4+ T cell, non–EM-like

CD8+ T cell, non–EM-like
CD8+ T cell, EM-like

NK cell
Monocyte, classical
Monocyte, intermediate

Disease

Cell type

Monocyte, nonclassical

Uncategorized 1

DC

Uncategorized 2
RBC
Platelet

HighLow
Normalized
expression

A

C

FLU
HD
COVID-19 (asymptomatic case)

COVID-19 (mild)
COVID-19 (severe)

COVID-19

FLU HD Mild
Severe

0.25

0.50

0.75

1.00

Pr
op

or
tio

n 
of

 e
ac

h 
ce

ll 
ty

pe

0.00

D

tSNE_1

tS
N

E_
2

tSNE_1

tS
N

E_
2

tSNE_1

tS
N

E_
2

B
CD3E CD4 CCR7 CD8A

E

NCAM1 CD14 FCGR3A NR4A1

CD19 FCER1A PPBP HBB

DC

Monocyte, nonclassical

Monocyte, intermediate

Monocyte, classical

NK cell

CD8+ T cell, non–EM-like

CD8+ T cell, EM-like

CD4+ T cell, non–EM-like

CD4+ T cell, EM-like

B cell, IgG+

B cell, IgG−

Mild Severe FLU
*

**

*

***

***

**

**

**

*

***

*

*

−4 0 4 −4 0 4 −4 0 4

Log2(relative propotion of cell type
disease/HD)

*

Fig. 1. Single-cell transcriptomes of PBMCs from COVID-19 and influenza patients. (A) tSNE projections of 59,572 PBMCs from healthy donors (HDs) (four samples, 
17,590 cells), patients with severe influenza (FLU) (five samples, 10,519 cells), patients with COVID-19 (asymptomatic: one sample, 4425 cells; mild COVID-19: four samples, 
16,742 cells; severe COVID-19: six samples, 10,296 cells) colored by group information. (B) Normalized expression of known marker genes on a tSNE plot. (C) tSNE plot 
colored by annotated cell types. (D) Proportion of cell types in each group excluding Uncategorized 1, Uncategorized 2, RBC, and platelet. The colors indicate cell type 
information. (E) Boxplots showing the fold enrichment in cell type proportions from patients with mild COVID-19 (n = 4), severe COVID-19 (n = 6), and FLU (n = 5) com-
pared with the HD group (mild COVID-19 versus HD: n = 16; severe COVID-19 versus HD: n = 24; FLU versus HD: n = 20). For the boxplots, the box represents the interquar-
tile range (IQR), and the whiskers correspond to the highest and lowest points within 1.5 × IQR. Uncategorized 1 (relatively high UMIs per cell and the presence of multiple 
marker genes), Uncategorized 2 (B cell like and high expression of ribosomal protein genes), RBC, and platelet were excluded. Two-sided KS tests were conducted for each 
cell type between the disease and HD groups. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Distinct subpopulations of CD8+ T cells in COVID-19 
and influenza
To uncover disease-specific transcriptional signatures in CD8+ T cells, 
we performed subclustering analysis from EM-like and non–EM-
like CD8+ T cell clusters using Seurat (17). Each disease group spe-
cifically enriched subclusters compared with the two other groups 

were identified in the non–EM-like CD8+ T cell cluster (Fig. 3A). Of 
the six subclusters from the non–EM-like CD8+ T cell cluster, clus-
ter 1 and cluster 3 were significantly enriched in the influenza and 
COVID-19 groups, respectively (Fig. 3, B and C, and fig. S3A). Clus-
ters with the high expression of PPBP, a marker of platelets, were 
excluded in following analysis (e.g., cluster 6 in fig. S3A). Up-regulated 

Fig. 2. Immune landscape of 
COVID-19. (A) Hierarchical 
clustering using the PCC of 
a normalized transcriptome 
between diseases in cell type 
resolution (n = 33). The color 
intensity of the heatmap in-
dicates the PCC values. The 
color bars above the heatmap 
indicate the cell type and dis-
ease group. The black box 
indicates the cell types that 
highly correlate between the 
severe COVID-19 and FLU 
groups. (B) Illustration of the 
enrichment P values for the 
select GO biological pathways 
(n = 49) of DEGs in COVID-19 
and FLU patients (left, six col-
umns: DEGs for COVID-19 and 
FLU groups compared with 
HD; right, two columns: DEGs 
between COVID-19 and FLU 
groups). MHC, major histocom-
patibility complex. (C) tSNE 
plot of representative gene 
expression patterns for GBP1 
(FLU specific), CREM (COVID-19 
specific), and CCL3 (COVID-19/
FLU common). (D) Top: Den-
drogram from WGCNA anal-
ysis performed using relative 
normalized gene expression 
between the COVID-19 and 
FLU groups for the genes be-
longing to the select biologi-
cal pathways in (B) (n = 316). 
Bottom: Heat map of relative 
normalized gene expression 
between the COVID-19 and 
FLU groups. The color bar (left) 
indicates cell type information 
clustered by hierarchical clus-
tering based on the PCC for 
relative normalized gene ex-
pression. Modularized gene 
expression patterns by WGC-
NA are shown together (G1, 
n = 10; G2, n = 147; G3, n = 27; 
G4, n = 17; G5, n = 12; G6, 
n = 64; G7, n = 34; G8, n = 5).
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genes in cluster 1 and cluster 3 were associated with previously de-
fined gene sets for “influenza A virus infection” and “SARS-CoV 
infection,” respectively (fig. S3B) (20). We also found that the cluster 
3–specific up-regulated genes reflect activation of immune response, 
including CD27, RGS1, CCL5, SELL, and RGS10 (fig. S3C and table 
S9). Protein interaction network analysis of selected top 30 up- 
regulated genes in each cluster based on STRING v11 (21) revealed the 
up-regulation of PRF1, GNLY, GZMB, and GZMH in cluster 1 and 
the up-regulation of GZMK, GZMA, CXCR3, and CCL5 in cluster 3 

(Fig. 3D, green). STAT1, TAP1, PSMB9, and PSME2, which are 
up-regulated preferentially by IFN-, were overexpressed only in 
influenza-specific cluster 1 (Fig. 3D, blue). We validated these data 
by intracellular staining for granzyme B and phorbol 12-myristate 
13-acetate (PMA)/ionomycin-stimulated intracellular cytokine stain-
ing for IFN-. The percentages of granzyme B+ and IFN-+ cells 
among CD8+ T cells were significantly higher in the influenza group 
than in the COVID-19 group (fig. S3D). Of the seven representative 
GO biological pathways for the proinflammatory and IFN responses, 
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Fig. 3. Subpopulation analysis of CD8+ T cells. (A) tSNE plot of the non–EM-like CD8+ T cell subpopulations in all groups (left, n = 6253), COVID-19 (top right, n = 2653), 
FLU (middle right, n = 1452), and HD (bottom right, n = 2148) colored by cluster information. (B and C) Boxplots showing the proportion of individual subclusters from the 
non–EM-like CD8+ T cell cluster within each group (COVID-19, n = 10; FLU, n = 5; HD, n = 4). The proportions follow normal distribution as tested by the Shapiro-Wilk nor-
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Two-sided Welch’s t test P values were 4.4 × 10−3 between COVID-19 and FLU in cluster 1, 3.5 × 10−2 between FLU and HD donor in cluster 1, 8.6 × 10−3 between COVID-19 
and FLU in cluster 3, and 5.8 × 10−3 between COVID-19 and HD in cluster 3. *P < 0.05 and **P < 0.01. (D) STRING analysis using the top 30 up-regulated genes in cluster 1 
(left) and cluster 3 (right). (E) Bar plots showing enrichment P values of eight representative GO biological pathways for proinflammation and IFN in cluster 1– or cluster 
3–specific up-regulated genes (cluster 1, n = 66; cluster 3, n = 183).
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pathways for responses to IFN-I and IFN-
II were more associated with influenza- 
specific cluster 1, whereas pathways for 
the response to TNF or IL-1 were more 
prominent in COVID-19–specific cluster 
3 (Fig. 3E).

Transcriptional signatures of 
classical monocytes in COVID-19
We performed subclustering analysis 
from all three types of monocyte clusters 
to find COVID-19–specific subclusters. 
However, there was no COVID-19–
specifically enriched subcluster (fig. S4, 
A and B). Next, we further focused on 
classical monocytes considering their 
crucial roles for inflammatory responses. 
We investigated DEGs between influenza 
and COVID-19 to seek COVID-19–
specific transcriptional signatures in clas-
sical monocytes (Fig. 4A). TNF and IL1B, 
major genes in the inflammatory re-
sponse, were identified as COVID-19–
specific and commonly up-regulated genes, 
respectively. To better characterize the 
transcriptional signatures in classical mono-
cytes, we performed K-means clustering 
of up-regulated genes in at least one dis-
ease group compared with the healthy 
donor group. We identified five different 
clusters of up-regulation (Fig. 4B and 
table S10): Genes in cluster 1 are com-
monly up-regulated in all disease groups, 
cluster 2 is influenza specific, cluster 3 is 
associated with mild/severe COVID-19, 
cluster 4 is associated with influenza and 
severe COVID-19, and cluster 5 is severe 
COVID-19 specific.

We examined each cluster-specific 
genes by gene set enrichment analysis 
(GSEA) using cytokine-responsive gene 
sets originated from each cytokine- 
treated cells (LINCS L1000 ligand per-
turbation analysis in Enrichr) (22). 
COVID-19–specific cluster 3 genes were 
enriched by TNF/IL-1–responsive genes, 
whereas influenza-specific cluster 2 genes 
were enriched by IFN-I–responsive genes 
in addition to TNF/IL-1–responsive 
genes (Fig. 4C), indicating that the IFN-I 
response is dominant in influenza com-
pared with COVID-19. We confirmed 
this result by analyzing cluster-specific 
genes with cytokine-responsive gene sets 
originated from other sources (Fig. 4D). 
Unexpectedly, clusters 4 and 5 exhibited strong associations with IFN-I–
responsive genes, in addition to TNF/IL-1–responsive genes (Fig. 4E), 
indicating that severe COVID-19 acquires IFN-I–responsive fea-
tures in addition to TNF/IL-1–inflammatory features.

IFN-I response in addition to TNF/IL-1 inflammatory 
response in severe COVID-19
Next, we directly compared classical monocytes between mild and 
severe COVID-19. When we analyzed DEGs, severe COVID-19 was 
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Fig. 4. Transcriptome of classical monocytes in patients with COVID-19. (A) Venn diagram of DEGs in COVID-19 
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characterized by up-regulation of various ISGs, including ISG15, 
IFITM1/2/3, and ISG20 (Fig. 5A). Both TNF/IL-1–responsive genes 
and IFN-I–responsive genes were enriched in severe COVID-19–
specific up-regulated genes (Fig. 5B). We measured plasma concen-
trations of TNF, IL-1, IL-6, IFN-, IFN-, and IL-18 in a larger 
cohort of patients with COVID-19. Among these cytokines, IL-6 and 
IL-18 were significantly increased in severe COVID-19 compared 
with mild COVID-19, whereas there was no difference in plasma 
concentrations of the other cytokines between the two groups (fig. S5A). 
These results indicate that cytokine-responsive gene signatures can-
not be simply explained by a few cytokines because of overlapped 
effects of cytokines.

To further investigate the characteristics of severe COVID-19, 
we performed a trajectory analysis with Monocle 2 (23) using two 
internally well-controlled specimens (one severe and one mild) in 
which both PBMC samples were collected from a single patient (the 
individual C7) with COVID-19. Trajectory analysis aligned classical 
monocytes along the disease severity with cluster 1 and cluster 3 cor-
responding to later and earlier pseudotime, respectively (Fig. 5C). 
Representative genes in cluster 1 were enriched in the severe stage 
and highly associated with the both IFN-I and TNF/IL-1–associated 
inflammatory response (Fig. 5D, fig. S5B, and table S11). GSEA con-
firmed that both the IFN-I response and TNF/IL-1 inflammatory 
response were prominent in cluster 1 but not in cluster 3 (Fig. 5E). 
Cluster 1 exhibited a significantly higher association with a gene set 
from systemic lupus erythematosus, which is a representative in-
flammatory disease with IFN-I features, than cluster 3 (Fig. 5F, left) 
but was not significantly associated with a gene set from rheuma-
toid arthritis (Fig. 5F, right).

We obtained additional evidence of the IFN-I–potentiated TNF 
inflammatory response in severe COVID-19 by analyzing a gene 
module that is not responsive to IFN-I but associated with TNF- 
induced tolerance to TLR stimulation. Park et al. (24) previously 
demonstrated that TNF tolerizes TLR-induced gene expression in 
monocytes, although TNF itself is an inflammatory cytokine. They 
also showed that IFN-I induces a hyperinflammatory response by 
abolishing the tolerance effects of TNF and defined a gene module 
responsible for the IFN-I–potentiated TNF–nuclear factor B (NF-
B) inflammatory response as “class 1” (24). This gene module was 
significantly enriched in cluster 1 but not in cluster 3 (Fig. 5G), which 
suggests that the IFN-I response may exacerbate hyper-inflammation 
by abolishing a negative feedback mechanism.

Validation of hyperinflammatory features combined 
with IFN-I response in lung tissues from a lethal case 
of COVID-19
Last, we validated IFN-I response and inflammatory features using 
bulk RNA-seq data obtained using postmortem lung tissues from 
patients with lethal COVID-19 (25). Although the analysis was lim-
ited to only two patients without individual cell-type resolution, in 
genome browser, up-regulation of IFITM1, ISG15, and JAK3 and 
down-regulation of RPS18 were observed commonly in postmortem 
COVID-19 lung tissues and classical monocytes of severe COVID-19 
(Fig. 6A). In the analysis with cytokine-responsive gene sets, both 
the IFN-I response and TNF/IL-1–inflammatory response were 
prominent in the lung tissues (Fig. 6B). DEGs in the lung tissues were 
significantly associated with cluster 4, which is commonly up-regulated 
in both influenza and severe COVID-19, and cluster 5, which is spe-
cific to severe COVID-19 in Fig. 4B (Fig. 6C). These genes were also 

significantly associated with the cluster 1 identified in the trajectory 
analysis but not with cluster 3 (Fig. 6D). When gene sets were de-
fined by DEGs between mild and severe COVID-19, the DEGs in 
postmortem lung tissues were significantly associated with genes 
up-regulated specifically in severe COVID-19 (Fig. 6E).

DISCUSSION
Severe COVID-19 has been shown to be caused by a hyperinflam-
matory response (7). In particular, inflammatory cytokines secreted 
by classical monocytes and macrophages are considered to play a 
crucial role in severe progression of COVID-19 (26). In the current 
study, we confirmed the results from previous studies by showing that 
the TNF/IL-1 inflammatory response is dominant in COVID-19, 
although a small number of patients were enrolled. However, we also 
found that severe COVID-19 is accompanied by the IFN-I response 
in addition to the TNF/IL-1 response. These results indicate that 
the IFN-I response might contribute to the hyperinflammatory re-
sponse by potentiating TNF/IL-1–driven inflammation in severe 
progression of COVID-19.

In the current study, we carried out scRNA-seq using PBMCs 
instead of specimens from the site of infection, e.g., lung tissues or 
bronchoalveolar lavage (BAL) fluids. However, hierarchical clustering 
based on relative changes to the healthy donor group showed that 
all types of cells among PBMCs were clustered together according 
to the disease groups as shown in Fig. 2A, indicating that there is 
disease-specific global impact across all types of cells among PBMCs. 
This finding suggests that peripheral blood immune cells are influ-
enced by common inflammatory mediators regardless of cell type. 
However, we could not examine granulocytes in the current study 
because we used PBMCs, not whole blood samples, for scRNA-seq.

In transcriptome studies for cytokine responses, we often analyze 
cytokine-responsive genes rather than cytokine genes themselves. 
However, we cannot exactly specify responsible cytokine(s) from the 
list of up-regulated genes because of overlapped effects of cytokines. 
For example, up-regulation of NF-B–regulated genes can be driven by 
TNF, IL-1, or other cytokines, and up-regulation of IFN-responsive 
genes can be driven by IFN-I or other IFNs. In the current study, 
we designated the IFN-I response because many up-regulated IFN- 
responsive genes were typical ISGs.

Recently, Wilk et al. (27) also performed scRNA-seq using PBMCs 
from patients with COVID-19 and healthy controls. Similar to 
our study, they found IFN-I–driven inflammatory signatures in 
monocytes from patients with COVID-19. However, they did not 
find substantial expression of proinflammatory cytokine genes such 
as TNF, IL6, IL1B, CCL3, CCL4, and CXCL2 in peripheral mono-
cytes from patients with COVID-19, whereas we detected the 
up-regulation of TNF, IL1B, CCL3, CCL4, and CXCL2 in the current 
study. Moreover, they found a developing neutrophil population in 
patients with COVID-19 that was not detected in our study. These 
discrepant results might be due to different platforms for scRNA-seq. 
Wilk et al. (27) used the Seq-Well platform, whereas we used the 10× 
Genomics platform that is more generally used. We also note that 
recent scRNA-seq analyses of COVID-19 sometimes lead to unre-
lated or contradictory conclusions to each other despite the same 
platform (28, 29). Although it often occurs in unsupervised analysis 
of highly multidimensional data, more caution will be required in 
designing scRNA-seq analysis of COVID-19, including definition of 
the severity and sampling time points.
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Fig. 5. Trajectory analysis 
of classical monocytes. 
(A) Volcano plot showing 
DEGs between mild and se-
vere COVID-19 groups. Each 
dot indicates individual 
gene, colored by red when 
a gene is significant DEG. 
(B) Bar plot showing the 
average −log10(P value) 
values in enrichment anal-
ysis using the perturbed 
genes of four different cell 
lines listed in L1000 LINCS 
for up-regulated genes in 
the severe COVID-19 group. 
Error bars indicate SD. (C) Tra-
jectory analysis of classical 
monocytes from specimens 
obtained at two different 
time points in a single 
C O V I D - 1 9  patient (mild: 
C7-2, 1,197 cells; severe: 
C7-1, 631 cells). The color 
indicates cluster informa-
tion (left) or the severity of 
COVID-19 (right). (D) Rela-
tive expression patterns of 
representative genes in the 
trajectory analysis are plot-
ted along the pseudotime. 
The color indicates the rel-
ative gene expression cal-
culated by Monocle 2. (E) Bar 
plots showing the average 
−log10(P value) values in the 
enrichment analysis using 
the perturbed genes of four 
different cell lines in L1000 
LINCS for up-regulated genes 
in cluster 3 (left) and cluster 1 
(right). Error bars indicate SD. 
(F) Comparison of combined 
enrichment scores between 
cluster 3 and cluster 1 for 
the gene sets from systemic 
lupus erythematosus (SLE) 
(n = 16) and rheumatoid ar-
thritis (RA) (n = 5). ***P < 
0.001; ns, not significant. 
(G) GSEA of up-regulated 
genes in cluster 3 (left) and 
cluster 1 (right) to the class 1 
gene module of monocyte- 
derived macrophages by Park 
et al. (24). NES, normalized 
enrichment score.
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Recently, Blanco-Melo et al. (25) examined the transcriptional 
response to SARS-CoV-2 in in vitro–infected cells, infected ferrets, 
and postmortem lung samples from patients with lethal COVID-19 
and reported that IFN-I and IFN-III responses are attenuated. How-
ever, we noted that the IFN-I signaling pathway and innate immune 
response genes were relatively up-regulated in postmortem lung 
samples from patients with lethal COVID-19 compared with SARS-
CoV-2–infected ferrets in their paper. Given that SARS-CoV-2 in-
duces only mild disease without severe progression in ferrets (30), we 
interpret that IFN-I response is up-regulated in severe COVID-19 
(e.g., postmortem lung samples from patients with lethal COVID-19) 
but not in mild COVID-19 (e.g., SARS-CoV-2–infected ferrets). Se-
vere COVID-19–specific signatures found in our current study were 
significantly enriched in the publically available data of postmortem 
lung tissues from the Blanco-Melo et al.’s study, although the analysis 
was limited to only two patients without individual cell type resolu-
tion (Fig. 6). In a recent study, Zhou et al. (31) also found a robust 

IFN-I response in addition to proinflammatory response in BAL fluid 
of patients with COVID-19. Moreover, up-regulation of IFN-I–
responsive genes has been demonstrated in SARS-CoV-2–infected 
intestinal organoids (32).

Although IFN-I has direct antiviral activity, their immuno-
pathological role was also reported previously (33). In particular, the 
detrimental role of the IFN-I response was elegantly demonstrated 
in a murine model of SARS (10). In SARS-CoV–infected BALB/c 
mice, the IFN-I response induced the accumulation of pathogenic 
inflammatory monocytes-macrophages and vascular leakage, lead-
ing to death. It was proposed that a delayed but considerable IFN-I 
response is critical for the development of acute respiratory distress 
syndrome and increased lethality during pathogenic coronavirus 
infection (6, 34).

Currently, the management of patients with severe COVID-19 
relies on intensive care and mechanical ventilation without a specific 
treatment because the pathogenic mechanisms of severe COVID-19 
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have not yet been clearly elucidated. In the current study, we 
demonstrated that severe COVID-19 is characterized by TNF/IL-
1–inflammatory features combined with the IFN-I response. In a 
murine model of SARS-CoV infection, timing of the IFN-I response 
is a critical factor determining outcomes of infection (6, 10). De-
layed IFN-I response contributes to pathological inflammation, 
whereas early IFN-I response controls viral replication. Therefore, 
we propose that anti-inflammatory strategies targeting not only in-
flammatory cytokines, including TNF, IL-1, and IL-6, but also patho-
logical IFN-I response need to be investigated for the treatment of 
patients with severe COVID-19.

MATERIALS AND METHODS
Patients
Patients diagnosed with COVID-19 were enrolled from Asan Med-
ical Center, Severance Hospital, and Chungbuk National University 
Hospital. SARS-CoV-2 RNA was detected in patients’ nasopharyn-
geal swab and sputum specimens by multiplex real-time reverse- 
transcriptase PCR using the Allplex 2019-nCoV Assay kit (Seegene, 
Seoul, Republic of Korea). In this assay, N, RdRP, and E genes of 
SARS-CoV-2 were amplified, and Ct values were obtained for each 
gene. SARS-CoV-2–specific antibodies were examined using the 
SARS-CoV-2 Neutralization Antibody Detection kit (GenScript, 
Piscataway, NJ) and were positive in all patients with COVID-19 in 
convalescent plasma samples or the last plasma sample in a lethal 
case. Hospitalized patients diagnosed with influenza A virus infection 
by a rapid antigen test of a nasopharyngeal swab were also enrolled 
from Asan Medical Center and Chungbuk National University 
Hospital from December 2015 to April 2016, before the emergence 
of COVID-19. Patients’ clinical features, laboratory findings, and 
chest radiographs were collected from their electronic medical 
records at each hospital. This study protocol was reviewed and ap-
proved by the institutional review boards of all participating institu-
tions. Written informed consent was obtained from all patients.

Single-cell RNA sequencing
PBMCs were isolated from peripheral venous blood via standard 
Ficoll-Paque (GE Healthcare, Uppsala, Sweden) density gradient 
centrifugation, frozen in freezing media, and stored in liquid nitro-
gen until use. All samples showed a high viability of about 90% on 
average after thawing. Single-cell RNA-seq libraries were generated 
using the Chromium Single Cell 3′ Library & Gel Bead Kit v3 (10× 
Genomics, Pleasanton, CA) following the manufacturer’s instruc-
tions. Briefly, thousands of cells were separated into nanoliter-scale 
droplets. In each droplet, complementary DNA (cDNA) was gener-
ated through reverse transcription. As a result, a cell barcoding 
sequence and UMI were added to each cDNA molecule. Libraries 
were constructed and sequenced as a depth of approximately 50,000 
reads per cell using the Nextseq 550 or Novaseq 6000 platform 
(Illumina, San Diego, CA).

Single-cell RNA-seq data processing
The sequenced data were demultiplexed using mkfastq (Cell Ranger 
10× Genomics, v3.0.2) to generate fastq files. After demultiplexing, 
the reads were aligned to the human reference genome (GRCh38; 
10× Cell Ranger reference GRCh38 v3.0.0), feature-barcode matrices 
were generated using the cellranger count and then aggregated by 
cellranger aggr using default parameters. The following analysis was 

performed using Seurat R package v3.1.5 (17). After generating the 
feature-barcode matrix, we discarded cells that expressed <200 genes 
and genes not expressed in any cells. To exclude low-quality cells from 
our data, we filtered out the cells that express mitochondrial genes 
in >15% of their total gene expression as described in previous studies 
(29, 35, 36). Doublets were also excluded, which were dominant in 
the cluster “Uncategorized 1.” Although there was a high variability 
in the number of UMIs detected per cell, most of the cells (90.5%) 
were enriched in a reasonable range of the UMIs (1000 to 25,000), 
and 59% of cells with less than 1000 UMIs were platelet or RBC ex-
cluded in downstream analysis. In each cell, the gene expression was 
normalized on the basis of the total read count and log transformed. 
To align the cells originating from different samples, 2000 highly 
variable genes from each sample were identified by the vst method in 
Seurat R package v3.1.5 (17). Using the canonical correlation analy-
sis, we found anchors and aligned the samples based on the top 15 
canonical correlation vectors. The aligned samples were scaled, and 
principal components analysis (PCA) was conducted. Last, the cells 
were clustered by unsupervised clustering (0.5 resolution) and visu-
alized by tSNE using the top 15 principal components (PCs).

Cell type annotation through marker gene identification 
in each cluster
To identify marker genes, up-regulated genes in each cluster rela-
tive to the other clusters were selected on the basis of the Wilcoxon 
rank sum test in Seurat’s implementation with >0.25 log fold change 
compared with the other clusters and a Bonferroni-adjusted P < 
0.05 (table S4). By manual inspection, among the 22 different clus-
ters, 20 were assigned to 11 known immune cell types, RBCs which 
are characterized by HBA1, HBA2, and HBB, and platelets. The 
clusters characterized by similar marker genes were manually com-
bined as one cell type. The two remaining clusters were assigned to 
Uncategorized 1 and “Uncategorized 2” because they had no distinct 
features of known cell types. On the basis of the distribution of UMI 
counts, the cluster Uncategorized 1 was featured by relatively high 
UMIs per cell compared with other clusters and the presence of higher 
expression of multiple cell type marker genes. The cluster Uncat-
egorized 2 was featured by a B cell–like signatures and high expression 
of ribosomal protein genes, not recommended to be further analyzed 
according to the 10× platform guideline. In these aspects, RBCs, 
platelets, Uncategorized 1, and Uncategorized 2 were excluded in 
downstream analysis.

Reproducibility of biological replicates
To check the reproducibility of biological replicates (individuals 
within a same group), we calculated the Spearman’s rank correlation 
coefficient for UMI counts that were merged according to each in-
dividual. The correlation coefficients of all individual pairs within 
the same group were visualized by a boxplot (COVID-19, n = 45; FLU, 
n = 10; HD, n = 6).

Hierarchical clustering of the transcriptomes at cell  
type resolution
In fig. S1E, to investigate the similarity of the transcriptomes be-
tween cell types across diseases, we merged the UMI counts of each 
cell type according to healthy donor, influenza, mild COVID-19, and 
severe COVID-19. Next, the UMI counts for each gene were divided 
by the total UMI count in each cell type and multiplied by 100,000 as 
the normalized gene expression. On the basis of a median expression 

 at U
lsan N

ational Institute of S
cience and T

echnology on July 29, 2020
http://im

m
unology.sciencem

ag.org/
D

ow
nloaded from

 

http://immunology.sciencemag.org/


Lee et al., Sci. Immunol. 5, eabd1554 (2020)     10 July 2020

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  A R T I C L E

11 of 13

value of >0.5, we calculated the relative changes in gene expression 
divided by the median value for each gene. Hierarchical clustering 
analysis was performed on the basis of the Pearson correlation coef-
ficient (PCC) of the relative change in gene expression.

Hierarchical clustering of variable gene expression among 
disease groups at cell type resolution
In Fig. 2A and fig. S2A, to compare the highly variable gene expres-
sion among mild and severe COVID-19 and influenza relative to 
healthy donors, the normalized gene expression used in fig. S1E was 
divided by the values in the healthy donor group. We selected the 
highly variable genes in terms of the top 25% SD followed by log2 
transformation (pseudocount = 1). In Fig. 2A, hierarchical cluster-
ing analysis was performed on the basis of the PCCs of the selected 
highly variable genes. For fig. S2A, to investigate the expression pat-
terns of the selected highly variable genes (n = 6052), K-means clus-
tering (k = 50) was performed on the basis of Euclidean distance. We 
manually ordered the clusters and visualized them as a heatmap, re-
vealing four distinct patterns: influenza specific (n = 1046), COVID-19 
specific (n = 1215), influenza/COVID-19 common (n = 1483), and 
cell type specific (n = 2308).

Analysis of dynamic changes in cell type composition 
compared with healthy donors
To investigate the dynamic changes in cell type composition, we 
calculated the proportion of cell types in each individual. As a control, 
we calculated the relative variation in each cell type composition 
between all pairs of healthy donors. Similarly, for each disease group, 
we calculated the relative variation in each cell type by dividing the 
fraction of the cell type in individual patient by that of individual 
healthy donor. After log2 transformation, we conducted statistical anal-
ysis using the relative variation in composition between the control and 
disease groups using a two-sided Kolmogorov-Smirnov (KS) test.

Identification of DEGs using MAST
For any two transcriptome profiles, to identify DEGs, we used the 
MAST algorithm in Seurat’s implementation based on a Bonferroni- 
adjusted P < 0.05 and a log2 fold change > 0.25.

GO analysis for biological pathways
In Fig. 2B, the DEGs in COVID-19 and influenza compared with 
healthy donors or COVID-19 compared with influenza were iden-
tified at cell type resolution. All DEGs were combined according to 
the disease groups for further analysis. The overlapping up- or down- 
regulated DEGs between COVID-19 and influenza compared with 
healthy donors were defined as “common up” or “common down.” 
The specific DEGs in COVID-19 or influenza were assigned as 
“COVID-19 up/down” or “FLU up/down,” respectively. In addition, 
COVID-19–specific up- or down-regulated genes compared with 
influenza were assigned as “COVID-19 > FLU” or “FLU > COVID-19,” 
respectively. The GO analysis was performed by DAVID. For each 
group of DEGs, the top 10 enriched GO biological pathways were 
selected, resulting in 49 unique GO biological pathways across all 
groups. The −log10(P values) are shown as a heatmap in Fig. 2B.

WGCNA analysis to identify modular gene  
expression patterns
The WGCNA was conducted with the genes listed in the top 10 GO 
biological pathways of “COVID-19 up,” “FLU up,” and Common 

up defined in Fig. 2B. The normalized gene expression values of the 
genes in COVID-19 were divided by the values in influenza and log2 
transformed (pseudocount = 1). We used default parameters with 
the exception of soft threshold = 10 and networkType = “signed” 
when we constructed a topological overlap matrix. The modular 
gene expression patterns were defined using cutreeDynamic with 
a minClusterSize of 5. We visualized the modular gene expres-
sion pattern as a heatmap in which the cell types were ordered 
according to hierarchical clustering with the default parameters of 
hcluster in R.

Subclustering analysis
To find disease-specific subpopulations, each immune cell type 
was subjected to the subclustering analysis using Seurat. Briefly, the 
highly variable genes (n = 1000) were selected on the basis of vst and 
then scaled by ScaleData in Seurat with the vars.to.regress option to 
eliminate variation between individuals. The subpopulations were 
identified by FindClusters with default parameters, except resolu-
tion (non–EM-like CD8+ T cells, 0.3; classical monocytes, 0.2); the 
inputs were the top eight PCs obtained from PCA of the scaled ex-
pression of the highly variable genes. The subpopulations were vi-
sualized by tSNE using the top eight PCs.

Trajectory analysis
The trajectory analysis was performed with 2000 highly variable 
genes in classical monocytes across mild (C7-2) and severe (C7-1) 
COVID-19 as defined by the vst method in Seurat. The following 
analysis was performed using Monocle2. Briefly, the input was created 
from the UMI count matrix of the highly variable genes using 
the newCellDataSet function with default parameters, except 
expressionFamily = “negbinomial.size”. The size factors and dis-
persion of gene expression were estimated. The dimension of the 
normalized data was reduced on the basis of DDRTree using 
reduceDimension with default parameters, except scaling  = 
FALSE, which aligned the cells to the trajectory with three dis-
tinct clusters.

To determine genes that gradually changed along the trajectory, we 
identified the DEGs using MAST between clusters 1 and 3, which 
represent the severe stage and mild stage, respectively. The ex-
pression patterns of representative DEGs were visualized along the 
pseudotime after correction with estimated size factors and disper-
sion for all genes.

K-means clustering analysis of monocytes
In Fig. 4B, we performed K-means clustering of DEGs among all 
pairs of mild COVID-19, severe COVID-19, and influenza. The 
log2-transformed relative gene expression of DEGs compared with 
healthy donors was subjected to K-means clustering (k = 10). Here, 
we used up-regulated DEGs in at least one disease group compared 
with the healthy donor group. We manually assigned five clusters 
based on gene expression patterns.

Data analysis of the transcriptome profiles of postmortem 
lung tissues
The transcriptome profiles of postmortem lung tissues from two lethal 
cases of COVID-19 and biopsied heathy lung tissues from two donors 
were downloaded from a public database (GSE147507). The DEGs 
were identified using DESeq2 based on a Bonferroni-adjusted P < 
s0.05 and a log2 fold change > 1.
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Enrichment analysis using Enrichr and GSEA 4.0.3
Enrichr, the web-based software for GSEA was used for LINCS 
L1000 ligand perturbation analysis (22), virus perturbation analysis, 
and disease perturbation analysis from the GEO database. “Combined 
score” was calculated as a parameter of enrichment as the log(P value) 
multiplied by the z-score from the Fisher’s exact test. GSEA 4.0.3 
software was used to conduct the GSEA when a ranked list of 
genes was available (Figs. 5G and 6, C to E) (37). Results for IFN-–
responsive genes were not presented because those were considerably 
overlapped with IFN-–responsive genes, which are typical ISGs. 
The normalized enrichment score and false discovery rate (FDR) 
q value were calculated to present the degree and significance of 
enrichment.

Flow cytometry analysis
Cryopreserved PBMCs were thawed, and dead cells were stained using 
the Live/Dead Fixable Cell Stain kit (Invitrogen, Carlsbad, CA). Cells 
were stained with fluorochrome-conjugated antibodies, including 
anti-CD3 (BV605; BD Biosciences), anti-CD4 (BV510; BD Biosci-
ences), anti-CD8 (BV421; BD Biosciences), anti-CD14 (PE-Cy7; BD 
Biosciences), anti-CD19 (Alexa Fluor 700; BD Biosciences), and anti- 
CD56 (VioBright FITC; Miltenyi Biotec). For staining with anti–
granzyme B (BD Biosciences), cells were permeabilized using a Foxp3 
staining buffer kit (eBioscience).

For intracellular cytokine staining of IFN-, PBMCs were stimu-
lated with PMA (50 ng/ml) (Sigma-Aldrich) and ionomycin (1 g/ml) 
(Sigma-Aldrich). Brefeldin A (GolgiPlug, BD Biosciences) and mo-
nesin (GolgiStop, BD Biosciences) were added 1 hour later. After 
another 5 hours of incubation, cells were harvested for staining with 
the Live/Dead Fixable Cell Stain kit, anti-CD3, anti-CD4, and anti- 
CD8. After cell permeabilization, cells were further stained with 
anti–IFN- (Alexa Fluor 488; eBioscience). Flow cytometry was per-
formed on an LSR II instrument using FACSDiva software (BD Bio-
sciences), and the data were analyzed using FlowJo software (Treestar, 
San Carlos, CA).

Enzyme-linked immunosorbent assay and cytometric  
bead arrays
Cytokines were measured in plasma samples, including IFN-, IL-18 
(enzyme-linked immunosorbent assay, R&D Systems, Minneapolis, 
MN), IL-1 (Cytometric bead array flex kit, BD Biosciences, San Jose, 
CA), TNF, IL-6, and IFN- (LEGENDplex bead-based immuno-
assay kit, BioLegend, San Diego, CA).

Statistical analysis
We performed the KS test to compare the distributions of two groups 
without assuming that the distributions follow normality. Welch’s 
t test was conducted to compare the two distributions after confirm-
ing the normality of the distributions using the Shapiro-Wilk nor-
mality test. A Wilcoxon signed rank test was conducted to compare the 
differences between two groups with paired subjects. The Mann- 
Whitney test was performed to compare the means of two groups. 
Statistical analyses were performed using Prism software version 
5.0 (GraphPad, La Jolla, CA). P < 0.05 was considered significant.
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