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ABSTRACT

Entropy production (EP) is a fundamental quantity useful for understanding irreversible process. In stochastic thermodynamics, EP is more
evident in probability density functions of trajectories of a particle in the state space. Here, inspired by a previous result that complex networks
can serve as state spaces, we consider a data packet transport problem on complex networks. EP is generated owing to the complexity of
pathways as the packet travels back and forth between two nodes along the same pathway. The total EPs are exactly enumerated along all
possible shortest paths between every pair of nodes, and the functional form of the EP distribution is proposed based on our numerical
results. We confirm that the EP distribution satisfies the detailed and integral fluctuation theorems. Our results should be pedagogically
helpful for understanding trajectory-dependent EP in stochastic processes and exploring nonequilibrium fluctuations associated with the
entanglement of dividing and merging among the shortest pathways in complex networks.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143031

Entropy production (EP) is essential for a deeper understand-
ing of stochastic dynamics in nonequilibrium systems. Recently,
in stochastic thermodynamics, EP is determined based on tra-
jectories of a particle in the state space. However, because the
trajectories are virtual, one can hardly imagine the origin of the
EP and understand the related fluctuation theorems. Here, we
model the state space as scale-free networks and consider a trans-
port problem based on them similar to a packet transport on
the Internet. A packet travels back and forth along all possible
shortest pathways between every pair of nodes. Owing to the com-
plexity of pathways of scale-free networks, the EP distribution is
asymmetric and satisfies the detailed and integral fluctuation the-
orems. This result suggests that the scale-free networks may serve
as a platform for further research on stochastic dynamics.

I. INTRODUCTION

Entropy production (EP) plays a key role in quantifying
dissipative work, such as heat, in the second law of thermodynam-
ics. Further, in nonequilibrium systems, EP serves as a key quantity

to measure the degree of irreversibility of a stochastic process.1–4

Recently, EP is discussed in terms of trajectories in phase space of
a single particle;5,6 it is defined as the logarithm of the ratio of proba-
bilities that a dynamic proceeds in the forward and corresponding
reverse directions along a single pathway in phase space between
two states.6,7 The ensemble of these EPs over all possible trajectories
between every pair of states has an EP distribution (EPD).

EPD satisfies fluctuation theorems (FTs), viz., the integral
FT and the detailed FT, developed by Crooks,8 Jarzynski,9 and
others for the dissipated work in nonequilibrium systems.10–13

The relation between the EPD and FTs has been experimen-
tally tested in the work distribution for various experimental
setups,14,15 including RNA folding,16 colloidal suspensions,17 and
electric circuit.18 However, it is extremely difficult to experimen-
tally find the probability density function of each trajectory along
which a particle proceeds in the forward and reverse directions.15

This is because the trajectories are virtual and the number of
trajectories increases exponentially as the number of steps is
increased.

Here, we aim to obtain a complete set of the probabilities of
dynamic trails for a given stochastic process between every two
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states. Then we obtain an EPD and justify the FTs. Hence, we
consider a biased random walk along the shortest pathways between
every pair of nodes on complex networks, which represent the state
spaces of the stochastic process.

Complex networks may be regarded as state spaces. For
instance, a node in the protein folding network represents a pro-
tein conformation, and a link between two nodes is connected when
a protein conformation is changed to another in consecutive steps.19

Recent studies using molecular dynamics simulations revealed that
the protein folding network is not a random network that has
degrees following a Poisson distribution. Instead, it is a scale-free
(SF) network that has a power-law degree distribution,20 where a few
nodes are connected to many nodes and the remaining many nodes
are connected to a few nodes.

The protein folding dynamics from denatured states to the nat-
ural state19,20 proceed along a few major pathways on the protein
folding network, rather than along the pathways randomly selected
at each node as in a diffusion process.21 Thus, the folding dynamics
may be regarded as biased random walks along the shortest pathway
on the conformation network. This view may be drastic in certain
systems. However, for the system where the stochastic process along
the shortest pathways is so dominant that the contributions by other
pathways are negligible, this view may be justified. Considering this
simplification, we are able to identify an essential factor that pro-
duces nontrivial EPs. We will further discuss the asymmetric prob-
abilities (transition rate) between two nodes (states) in the forward
and reverse directions naturally arising from the asymmetric entan-
glement of the shortest pathways: if the shortest pathway between
a pair of nodes is one channel, then the EP would be zero. How-
ever, the shortest pathways between two randomly selected nodes
could have more than one channel in complex networks. In such a
case, the shortest pathways are entangled, divided, and/or merged.
Hence, the probability to pass through a link in one direction can be
different from that in a reverse direction. The EP then is nonzero.
We enumerate all EPs, composed of NEP ≡ nspN(N − 1) elements,
where nsp is the mean number of shortest pathways between a pair
of nodes. The EPD is completely composited.

The biased random walks also occur in a data packet transport
on the Internet. Assuming that a data packet is sent from one node
to a destination on the Internet at each time step, the packet is trans-
mitted to a neighbor according to the router protocol toward the
final destination. Unless the traffic is congested, packets travel along
the shortest path between the two nodes,22 thus considering biased
random walks on the shortest pathways is natural for packet dynam-
ics on the Internet. In social networks, the flow along the shortest
pathways on complex networks was used to quantify a person’s
influence in society.23 An efficient algorithm for identifying every
possible shortest pathway between every pair of nodes costs com-
putational complexity O(N2 log N), where N is the network size.23–25

Thus, obtaining the EPs and their distribution can be implemented
within reasonable system sizes.

Further, we consider a packet transport along the shortest
pathway on random and scale-free networks and calculate the prob-
abilities of passing across each link on the shortest pathways when
each pair of nodes sends and receives a packet. These probabilities
generate EPs and, thereby, the EPD. Using this complete EPD, we
verify analytically and numerically the detailed and integral FTs.

We show that the cumulative EPD exhibits a double exponential
form.

This paper is organized as follows: In Sec. II, we introduce an
EP induced by the topological complexity of the shortest pathways
on a network. In Sec. III, we verify that the total EP obtained from
every shortest pathway satisfies the integral FT and the detailed FT.
In Sec. IV, we present numerical results of the EPD for several model
networks. In Sec. V, we propose a functional form of the cumulative
EPD based on numerical results and determine the EPD. A summary
is presented in Sec. VI.

II. EP ON NETWORKS

We consider data packet transport from a source node i to
a target node j along a shortest pathway Eα of length dst on a
given network, where Eα = (α0, α1, . . . , αdst−1, αdst). In the sequence
Eα, each element stands for the node on the shortest pathway with
the boundary condition, α0 = i and αdst = j. Then, the probability
P[Eα] that transport occurs along the pathway Eα is given as P[Eα]
= ρ(i)ρ(j|i) 5[Eα; i, j], where ρ(i) denotes the probability that node i
is selected as a source and ρ(j|i) is the conditional probability that
node j is chosen as a target. Given the pair of source and target,
(i, j), the transition probability 5[Eα; i, j] along Eα is determined by
the topology of the shortest pathways from i to j. The shortest path-
way is either single or multiple, and multiple pathways are either
in parallel or entangled, as shown in Fig. 1. As a packet travels
along the shortest pathways, it can reach a branching node. Then,
the packet chooses one branch among all the branches with prob-
ability 1/Nb, where Nb is the number of branches on the shortest
pathway. This random choice is repeated as the packet reaches a
branching node. When the packet reaches a target, the probabil-
ity of taking that shortest pathway can be calculated as the product

FIG. 1. (a) Sample network to illustrate the EPs along each shortest path from a
to g and shortest return path from g to a. For pathway α, a data packet trav-
els along the pathway a → b → d → g and returns in the reverse direction
g → d → b → a. (b) At node a, there are two ways to move toward node g with
equal probability. The packet takes the link a → bwith conditional probability 1/2.
Next, it takes the link b → d with conditional probability 1/2. The link d → g is
taken with conditional probability one. Accordingly, the transition probability along
the pathway Eα, denoted as5[Eα; a, g], is found to be 1/4. In the reverse trajectory
Eα′, the transition probability5[Eα′; g, a] is found to be 1/3. Table I shows the tran-
sition probabilities along each shortest pathway in the forward and corresponding
reverse directions.
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of these probabilities, as illustrated in Fig. 1. The effect of this ran-
dom choice mimics the stochastic noise in the dynamic process. Let
us consider the reverse process where the packet returns along the
corresponding reverse path Eα′ of Eα from node j to node i, where
Eα′ = (αdst , αdst−1, . . . , α1, α0). Since Eα′ is also one of the shortest
pathways from source j to target i, one can define the probability
P[Eα′] in the same manner as P[Eα]. In general, the probabilities for
the path Eα and its reverse one Eα′ may be different. The discrepancy
can be regarded as the irreversibility for the transport along Eα, and
thus the corresponding EP is defined as follows:

1S[Eα] = ln

[

P[Eα]

P[Eα′]

]

= ln

[

ρ(i)ρ(j|i) 5[Eα; i, j]

ρ(j)ρ(i|j) 5[Eα′; j, i]

]

. (1)

In this problem, ρ(i) = ρ(j) = 1/N, because the node is
selected randomly from among N nodes. The conditional probabil-
ity is also given by ρ(j|i) = ρ(i|j) = 1/(N − 1) because node j (i) is
randomly selected from N − 1 nodes excluding node i (j). There-
fore, the nonzero EP in Eq. (1) is caused by only the difference
between 5[Eα; i, j] and 5[Eα′; j, i]. We will show that 5[Eα; i, j] can
differ from 5[Eα′; j, i] owing to the entanglement of dividing and
merging among the shortest pathways on complex networks.

We consider a simple example to explain how to calculate the
transition probabilities on the shortest pathways. Figure 1 is a sub-
graph of a network showing the shortest pathways between two
nodes, a and g as the source (s) and target (t), respectively. There

exist three shortest pathways, which are denoted as Eα, Eβ , and Eγ ,
with the length dst = 3. Let us first consider packet transport along
the pathway Eα = (a, b, d, g), from a toward node g. At node a, the
packet needs to choose either node b or node c, which we assume
are chosen with equal probability, as the site of the next step. Thus,
hopping from a to b occurs with probability 1/2, as does hopping
from a to c. Next, it chooses node d with conditional probability
1/2, because the pathway is divided into two possibilities. Thus,
the packet arrives at node d with probability 1/4. Then, it trav-
els to the target t = g without any branching, i.e., with conditional
probability one. Accordingly, the transition probability is given as

5[Eα; a, g] = 1/4 along the pathway a
1/2
−→ b

1/2
−→ d

1
−→ g, where the

number of each arrow represents conditional probability. On the
other hand, when it returns from node g to a along the reverse
trajectory Eα′ = (g, d, b, a), one can see 5[Eα′; g, a] = 1/3 along the

pathway g
1/3
−→ d

1
−→ b

1
−→ a. Thus, the two transition probabilities

are not the same: 5[Eα; a, g] 6= 5[Eα′; g, a]. Further, ρ(a) = ρ(g)
= 1/N, and ρ(j|i) = ρ(i|j) = 1/(N − 1), which yield 1S[Eα]
= ln(3/4) by the definition Eq. (1). The EPs along the pathways
Eβ and Eγ can be similarly calculated and are listed in Table I.

TABLE I. Probability that a packet takes each shortest pathway and corresponding

entropy production. 5 denotes the transition probability.

Pathway Pathway from s to t 5 Pathway from t to s 5 1S

Eα a
1/2
−→ b

1/2
−→ d

1
−→ g 1

4
g

1/3
−→ d

1
−→ b

1
−→ a 1

3
ln 3

4

Eβ a
1/2
−→ b

1/2
−→ e

1
−→ g 1

4
g

1/3
−→ e

1
−→ b

1
−→ a 1

3
ln 3

4

Eγ a
1/2
−→ c

1
−→ f

1
−→ g 1

2
g

1/3
−→ f

1
−→ c

1
−→ a 1

3
ln 3

2

One can easily find that the transition probability is normalized as

5[Eα; a, g] + 5[ Eβ ; a, g] + 5[ Eγ ; a, g] = 1. Therefore, for all possible
shortest pathways of N(N − 1) pairs on the complex network, the
probability P[Eα] is also normalized,

∑

Eα P[Eα] = 1.

III. FLUCTUATION THEOREMS

Here, we obtain the EPD over all possible shortest pathways
between every pair of nodes. The EPD P(1S) is given by

P(1S) =
∑

Eα

∑

i

∑

j6=i

δ(1S − 1S[Eα])ρ(i)ρ(j|i) 5[Eα; i, j]

=
∑

Eα′

∑

j

∑

i 6=j

δ(1S − 1S[Eα])ρ(j)ρ(i|j) 5[Eα′; j, i]e1S[Eα]

=
∑

Eα′

∑

j

∑

i 6=j

δ(1S + 1S[Eα′])ρ(j)ρ(i|j) 5[Eα′; j, i]e−1S[Eα′]

= P(−1S)e1S, (2)

where we have used the fact that 1S[Eα′] = −1S[Eα] and
∑

Eα can
be replaced by

∑

Eα′ because the Jacobian is 1. We note that even
though 1S[Eα′] = −1S[Eα], the EPD is asymmetric. This asymmetry
is caused by the definition of the EPD itself. For instance, when a
data packet travels from node i to j along the path Eα and then travels
along the corresponding reverse path Eα′, 1S[Eα] is generated for the
path Eα, whereas 1S[Eα′] = −1S[Eα] for the reverse path Eα′. These
two EPs contribute to the EPD by their weights P[Eα] and P[Eα′],
respectively. Accordingly, even though 1S[Eα] = −1S[Eα′], because
5[Eα; i, j] 6= 5[Eα′; j, i], P(1S) 6= P(−1S), but P(1S) = P(−1S)e1S.

The relation P(1S) = P(−1S)e1S is known as the detailed
FT and is an instance of the Gallavotti–Cohen symmetry of the

FIG. 2. Plot of the detailed FT. The ratio of the EPDs in the forward and backward
directions is equal to e1S. Numerical data are obtained from the Barabási–Albert
(BA) model networks introduced in Appendix on which a data packet is sent and
returned between every pair of nodes along the shortest pathways. Data points
lie exactly on the straight line with slope one.
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probability density function.12 We confirm the detailed FT numer-
ically in Fig. 2. From Eq. (2), the integral FT is derived as 〈e−1S〉
=

∑

1S e−1SP(1S) = 1.

IV. SCALING OF THE EP DISTRIBUTION

We perform numerical simulations to obtain EPs based on
transport along every shortest pathway between all possible pairs
of nodes on several networks: the BA model,26 the ER model,27 and
the Chung–Lu (CL) model28 with the degree exponents γ = 2.2 and
γ = 2.5. We will explain these three model networks in Appendix.
The EPDs P(1S) on these networks are shown in Fig. 3(a). All these
networks were constructed with the same mean degree 〈k〉 = 8 and
system size N = 211 × 10. We obtain these EPDs on the giant com-
ponent of each network. The EPDs have different shapes. The width
of the EPD on the BA model is generally wide, whereas that on the
ER model is generally narrow. This result arises from the extent
of the entanglement of the shortest pathways for the ER and SF
networks.

In statistical mechanics, the entropy is an extensive quantity
with respect to the system size N. However, in this problem, the
length dst of each pathway plays a role similar to that of N in
Euclidean space. Thus, we rescale the EP 1S by the path length
and define 1S/dst. The EPDs obtained for different network sizes
N collapse onto a single curve, as shown in Figs. 3(b) and 3(c).

V. ASYMMETRIC EP DISTRIBUTION AND TESTING DFT

It is interesting to find the functional form of the asymp-
totic EPD, called asymptote, because the mean entropy production
is related to the large deviation function.29 We consider a dataset
composed of NEP EPs obtained from all possible shortest pathways
between every pair of nodes of a given network such as the BA
model, for instance. Next, we consider the cumulative distribution
of P(1S), i.e., F(x) = Prob{1S ≤ x}, that is, F(x) =

∫ x

−∞
d1SP(1S).

In general, to find functional form of a cumulative distribution in
asymptotic limit, one may often use the extreme value statistics
(EVS), which is valid for the distribution composed of indepen-
dent and identically distributed (i.i.d.) random variables. It is known
that there exist three types of functional forms: (i) Gumbel type, (ii)
Fréchet type, and (iii) Weibull type. On the other hand, the EPs we
consider here are not i.i.d., but correlated as they satisfy the FTs.
Thus, the EVS method is not justified. Nevertheless, we check if the
EPD may fit to one of these EVS categories to obtain some hint for
the functional form of the EPD.

We plot the cumulative distribution F(1S) in the forms of
ln(− ln F(1S)) for 1S > 0 and ln(− ln(F̃(1S))) for 1S < 0, where
F̃(1S) = 1 − F(1S), as a function of 1S in Fig. 4, motivated by the
Gumbel-type distribution. In these figures, we used the dataset of
EPs collected from 300 different network configurations for each
model network of the same network size N to reduce the fluctuations
arising from different network topologies. Figures 4(b), 4(d), 4(f),
and 4(h) show that the data of ln(− ln F(1S)) excluding the tail part
decrease with increasing 1S along a straight line for the case 1S > 0
with some wiggling behavior, but the data in the tail part decay more
rapidly. We remark that the region of the straight line becomes wider
as the system size is larger. On the other hand, the rapidly-decay

FIG. 3. (a) EPDs on the four model networks: BAmodel, scale-free CLmodel with
degree exponent γ = 2.2, scale-free CL model with degree exponent γ = 2.5,
and ERmodel, from top to bottom. Data are obtained from the giant component of
each model network of system size N = 211 × 10 ≈ 2 × 104 and mean degree
〈k〉 = 8. They are averaged over 300 network configurations. All EPDs exhibit
peaks at1S = 0, which are attributed to transport along untangled pathways. (b)
EPDs on BA networks of different system sizes, N = 4096, 8192, 10 240, 14 336,
and 20 480. As N is increased, the EP curves tend to converge to the asymp-
totic one. (c) Distributions of EPs divided by the Hamming distance dst between
a source (s) and a target (t) for each pathway, that is, 1S/dst . The system sizes
are the same as those in (b). The data for the different system sizes collapse onto
a single curve.
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FIG. 4. Plots of the cumulative EPDs in the
forms of ln(− ln F̃(1S)) for 1S < 0 and
ln(− ln F(1S)) for 1S > 0 as a function of
1S for several model networks: (a) and (b) BA
model; (c) and (d) ER model; (e) and (f) CL
scale-free network model with degree exponent
γ = 2.2; and (g) and (h) γ = 2.5. The data
points are obtained from different system sizes
N = 10240 (blue), 14336 (green), and 20480
(red) for each model network. For each given N,
the data points are obtained from 300 different
network configurations. The data points denoted
by symbol (•) in the tail part are collected from
the extrema 1S of each network configuration for
N = 20 480.
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region becomes wider as the number of network configurations is
increased. To unveil the origin of the rapid decay for 1S > 0, we
pick up the maxima of 1S from each network configuration for each
network model of the same size, and they are identified in each plot
of Fig. 4 and denoted by symbol (•). We find that these maxima
cover the tail part, suggesting that the tail part is mainly composed of
the maxima of 1S of each network configuration. Because the frac-
tion of those maxima is O(1/NEP) for each network configuration,
we may ignore this contribution in our discussion about checking
the DFT using the EPD.

The cumulative distribution may be regarded as

ln(− ln F(1S)) ≈ −a1S + b for 1S > 0, (3)

ln(− ln F̃(1S)) ≈ a′1S + b′ for 1S < 0, (4)

where a and a′ are positive constants and b and b′ are constants. The
constants (a, a′) are estimated to be (2.00, 3.04) for the BA model,
(4.54, 5.56) for the ER model, (2.52, 3.56) for the CL model with
degree exponent 2.2, and (2.58, 3.71) for the CL model with degree
exponent 2.5 in Fig. 4.

Next, we derive the functional form of P(1S). From F(1S)
≈ exp(−e−a1S+b) for 1S > 0, the EPD is derived as

P(1S) =
dF(x)

dx

∣

∣

∣

∣

x=1S

≈ a exp(−e−ax+b)e−ax+b|x=1S

≈ a exp(−a1S + b) (5)

for sufficiently large y ≡ a1S − b � e−y. On the other hand, for

1S < 0, 1 − F(1S) = exp(−ea′1S+b′
). Then, similarly,

P(1S) = −
dF(x)

dx

∣

∣

∣

∣

x=1S

≈ a′ exp(−ea′x+b′
)ea′x+b′

∣

∣

∣

x=1S

≈ a′exp(a′1S + b′) (6)

for sufficiently negatively large 1S. Therefore,

P(1S)

P(−1S)
≈

aeb

a′eb′ exp(−(a − a′)1S). (7)

Here, we recall that the difference a − a′ of the two constants is very
roughly close to minus one regardless of the model networks. Thus,
we may say that formula (7) supports the DFT.

VI. SUMMARY AND DISCUSSION

In this paper, we considered the EPD arising from the complex-
ity of the shortest pathways from one node to another on complex
networks. We verified explicitly that this EPD satisfies well-known
FTs, i.e., the integral FT and the detailed FT. To obtain the result, we
considered a data packet transport problem in which a packet travels
back and forth between every pair of nodes along each of the short-
est pathways. At a branching node along the way, a packet chooses
one branch randomly. The effect of this random choice reflects the
stochastic process in dynamics in nonequilibrium systems. Owing to
the complexity of the shortest pathways, the probabilities of taking
a shortest pathway in one direction and the corresponding reverse
direction can be different, resulting in a nonzero EP. We calcu-
lated this difference explicitly and found the functional form of

the cumulative EPD in the large-EP limit in positive and negative
regions using direct measurement. The cumulative EPD behaves
as F(1S) ≈ exp(−e−a1S+b) in the positive region and 1 − F(1S)

∼ exp(−ea′1S+b′
) in the negative region, where a and a′ are positive

constants and b and b′ are constants. The constants depend on net-
works and differ from each other. The ratio P(1S)/P(−1S) scales
as exp(−(a − a′)1S) asymptotically. We find that the numerical dif-
ference a − a′ is roughly −1 regardless of the network models, which
supports the detailed FT.

In the stochastic thermodynamics, the fluctuation theorems
were derived from the total EP that is based on the trajectory-
dependent EP in the stochastic process. However, because the tra-
jectories of the stochastic dynamic process are rather virtual, one
can hardly imagine the origin of the total EP and understand the
origin of the fluctuation theorems. In this study, one can identify
the reverse trajectory easily and can calculate the total EP explic-
itly. Thus, our result would be pedagogically helpful not only for
understanding the concept of trajectory-dependent EP in stochastic
processes, but also for exploring nonequilibrium fluctuations related
to the entanglement of dividing and merging among the shortest
pathways of complex networks.

Note added in Proof. We became aware of a paper30 from an
anonymous referee, which considered the average EP of stochastic
processes between two states on random networks. Although the
paper30 and ours might start from a similar motivation, they differ
from each other in the aspects of aims and detailed dynamics.
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APPENDIX: NETWORK MODELS

(i) A BA network is constructed as follows: At the beginning, there
exist m0 nodes in the system. At each time step, a node is
added with m links in the system, where m ≤ m0. Each link
is connected to a node i with degree ki with the probability
p(ki) = ki/

∑

j kj. This process is repeated until the total num-

ber of nodes in the system becomes N. This model generates
a scale-free network with the degree distribution Pd(k) ∼ k−γ

with γ = 3.26

(ii) A CL network is constructed as follows: At the beginning, there
exist a fixed number of N nodes indexed i = 1, . . . , N in the sys-
tem. Then, a node i is assigned a weight of wi = (i + i0 − 1)−µ,
where µ ∈ [0, 1) is a control parameter and i0 ∝ N1−1/2µ for
1/2 < µ < 1 and i0 = 1 for µ < 1/2. Then, two different
nodes (i, j) are selected with their probabilities equal to the
normalized weights, wi/

∑

k wk and wj/
∑

k wk, respectively,
and a link is added between them unless one already exists.
This process is repeated until pN links are created in the sys-
tem, where p is a control parameter. There exists a percolation
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threshold pc, above which a macroscopic-scale large cluster is
generated. We considered the data packet transport problem
on such large networks. The obtained network is scale-free in
degree distribution with the exponent γ = 1 + 1/µ.

(iii) An Erdős–Rényi network is constructed as follows: At the
beginning, there exist a fixed number of N vertices in the sys-
tem. At each time step, two nodes are selected randomly. They
are connected with a link unless they are already connected.
This process is repeated until pN links are created in the system,
where p is a control parameter. It is known that pc = 1/2 is the
percolation threshold. Thus, for p > pc, a macroscopic-scale
large cluster is generated. We considered the data packet trans-
port problem on such large networks. The obtained network
has the degree distribution following a Poisson distribution.
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