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Surface and Interfacial Chemistry in the Nickel-Rich

Cathode Materials

Junhyeok Kim,® Hyungyeon Cha,” Hyomyung Lee,” Pilgun Oh,*® and Jaephil Cho*™

With increasing demands for high energy lithium-ion batteries,
layered nickel-rich cathode materials have been considered as
the most promising candidate due to their high reversible
capacity and low cost. Although some of the materials with
nickel contents =60% were commercialized, there are tremen-
dous obstacles for further improvement of electrochemical
performance, which is strongly related to the unstable cathode

1. Introduction

With extending the applications of the lithium-ion batteries
(LIBs) from the mobile electronics to the electric vehicle and
electrical energy storage systems, state-of-the-art LIBs with
high energy/power density and thermal stability are
required."® To meet these demands, the layered nickel-rich
cathode materials have been considered as the most feasible
candidate among a variety of the cathode materials owing to
their high reversible capacity.”” In particular, the nickel-rich
cathodes with the reversible capacity of ~220 mAhg™" deliv-
ered higher gravimetric energy density of ~800 Whkg™' than
the conventional LiCoO, cathode with that of ~570 Whkg™'.
However, the similar ionic radius between the divalent nickel
ions (0.69 A) and lithium ions (0.76 A) gave rise to the formation
of the NiO-like structure during the electrochemical test
because of the Li/Ni disordering."” The phase transformation
from the layered to the NiO-like structure inhibited the lithium-
ion transport at the cathode surface, accelerating the capacity
fading."""® Moreover, the anisotropic volume changes of the
primary particles in the conventional nickel-rich cathodes with
aggregated particle shape can induce the intragranular crack-
ing formation inside the cathode after the prolonged electro-
chemical test.""" Along the void space that was created by
the cracking evolution, the electrolyte could be penetrated,
thus leading to the deleterious side reactions with the electro-
lyte as well as the phase transformation."®

Furthermore, having noticed that the electrochemical
reaction occurred at the interface between the cathode and
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surface and interfacial properties. In this regard, a specific
review on the interfacial chemistry between the cathode and
electrolyte during electrochemical testing is provided. We
highlight the underpinning interfacial chemistry and degrada-
tion mechanisms of the cathode materials. Finally, light is shed
on the recent efforts for enhancing the interfacial stability of
the nickel-rich cathode materials.

electrolyte, we should consider how the damaged cathode can
influence the electrolyte during the electrochemical cycling.
The dynamic behavior of the cathode-electrolyte interface is
described in Figure 1a. In general, the conventional organic
electrolyte is not electrochemically decomposed within the
cathodic voltage window."”"® The nucleophilic reactions
between the cathode and electrolyte originated from the
spontaneous transition metal reductions."”?% This eventually
results in the oxidative decompositions of the electrolyte
solvent, which creates the organic solid-electrolyte interphase
(SEI) layer on the cathode surface. Interestingly, the cathode
itself was also subjected to the structural transformation from
the layered to the rock-salt like structure because of the
reductions of the nickel ions (Figure 1b)."*'¥ In addition, the
decomposition of the LiPF, salt in the electrolyte that were
widely used in the LIBs could form the inorganic SEI layer and
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Figure 1. Evolution of dynamic interphases between nickel-rich cathodes
and electrolyte: (a) Evolution mechanisms of the cathode-electrolyte
interphases during the battery cycling. (b) ToF-SIMS depth profile at the
surface of the cycled LiNi,,Co,,5Mng;50,. Part b was reproduced with
permission of Ref. [28]. Copyright 2017, Macmillan Publisher Limited.
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acidic species such as the hydrofluoric acid (HF) in the presence
of the water (LiPFe—LiF+PF;, PF;+H,0—POF;4 2HF).2"%
More seriously, the HF is likely to dissolve the transition metal
ions in the cathode structure, and the transition metal ions
were deposited on the anode side, deteriorating both cathode
and anode integrity.**** With respect to the microstructure of
the cathode SElI layer, the organic species locally existed at the
surface of the interphases; for comparison, the inorganic
compounds were distributed inside the interphases (Figure 1c).
Even though the solid-state lithium-ion diffusion in the cathode
host structure is the rate-determining step during the electro-
chemical reaction, the cathode SEI layer is closely associated
with the charge transfer reaction.”’ Hence, it is highly desired
to understand the deleterious side reactions of the cathodes
with the electrolyte and their effects on the battery perform-
ance. On the basis of such understanding, it is further necessary
to rationally design the nickel-rich cathode materials for
achieving high energy density.

To mitigate the cathode reactivity with the electrolyte,
there are five approaches for the development of high energy
LIBs: (1) the incorporation of electrochemically inactive ele-
ments into the cathode structure,**>"" (2) the introduction of
the concentration gradient, (3) the introduction of surface
coating layer on the cathode®**® (4) the morphological
changes to the porous structure, and (5) the crystallinity tuning
from the polycrystalline to the single crystalline cathode.””*
With respect to the first approach, it could improve the
interfacial stability by inhibiting the transition metal reductions.
Furthermore, the nickel-rich cathodes with the concentration
gradient could also enhance the interfacial stability by mitigat-
ing the micro-crack formations during the electrochemical test.

Accordingly, many researchers have intensively concen-
trated on the surface coating method to physically block the
exposed cathode particle against the electrolyte. Although the
surface coating layer on the cathode stabilized the interfacial
structure, the continuous intragranular cracking evolution
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caused the exposure of the active primary particle to the
electrolyte after the prolonged electrochemical test. In this
regard, to entirely accomplish the interfacial stability, there is
an increasing volume in the research regarding the single
crystalline nickel-rich cathode materials. The single crystalline
characteristics could enable the cathode materials to maintain
the original morphology because of the isotropic volume
changes of the single particle during the charging and
discharging process.”” This morphological integrity could give
rise to the formation of the cathode SEI layer at only cathode
surface, leading to long-term cycling stability. To date, there
have been a variety of the review articles which addressed the
complex material and interfacial chemistry.*’*” Along with the
previously published review articles, this review will be of
particular interest to the battery researchers who are interested
in the interfacial chemistry of the nickel-rich cathode materials.
Herein, we intensively identified the unstable interface
between the nickel-rich cathode materials and electrolyte. In
section 2, we will detailly cover complex interfacial chemistry
between the cathodes and electrolyte, and highlight its effect
on the battery degradation and safety. In the final section, a
wide range of strategies were intensively investigated for
enhancing the interfacial stability of the cathode materials.

2. Surface and Interfacial Chemistry
2.1. Spontaneous Transition Metals Reduction

The energy difference between the Fermi level (E;) of the
cathode and highest occupied molecular orbital (HOMO)/low-
est unoccupied molecular orbital (LUMO) of the electrolyte is
an important parameter to determine the electrochemical
stability of the cathode materials.®'®*? When the E; of the
cathode is close to the HOMO and LUMO of the electrolyte, it
gives rise to the oxidation and reduction of the electrolyte,
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respectively, forming the SEI layer on the cathode. Hence, the
energy separation between HOMO and LUMO of the electrolyte
provides the potential window for the battery operations.
Figure 2a shows the HOMO and LUMO levels of conventional
organic electrolyte. The energy levels of the electrolyte were
calculated using the density of function theory (DFT)
calculations.®**? Considering that the conventional nickel-rich
cathode materials have been generally operated in the voltage
ranged from 2.8 to 4.4V, there is no thermodynamic driving
force about electrolyte electro-decompositions. However, to
date, many researchers have observed that the cathode SElI
layer was formed even after the electrochemical test or the
contact with the electrolyte because of the electro-oxidation of
the electrolyte.****" For example, Saito etal. intensively
investigated the evolution of the SEI layer on the Li-
Nig50C00.15Al0 050, (NCA) cathode after the immersion into the
electrolyte for 90 days through attenuated total reflectance
(ATR) analysis (Figure 2b)."® The immersed NCA cathode
exhibited characteristics IR band peak at 1019 cm™' compared
to the pristine NCA, indicating that the P=O bond based
materials were formed by the reactions with the electrolyte.
More recently, Cherkashinin et al. probed that the E; of the
cathode materials was changed only after contact with the
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Figure 2. Local electronic structure changes of the cathode structure: (a)
Reduction and oxidation energy level of the conventional electrolyte solvent
in the LIBs. Reproduced with permission of Ref. [18]. Copyright 2015,
American Chemical Society. (b) ATR spectra of the pristine NCA electrode
and the NCA electrode after immersion in the electrolyte for 90 days.
Reproduced with permission of Ref. [81] Copyright 2007, Elsevier. (c)
Electrochemical impedance spectroscopy (EIS) results of the Li-
Nig4sMng,4C0415Tig 0,0, cathode with increasing ageing time in the electrolyte.
High angle annular dark field scanning transmission electron microscopy
(HAADF-STEM) images of (d) the pristine LiNiy,Mn,,C0445Tig0,0, cathode and
(e) the LiNig4Mng4C0q15Tig0,0, cathode after the electrolyte exposure for

30 h. Part c—e were reproduced with permission of Ref. [13]. Copyright 2014,
Macmillan Publisher Limited. (f) Soft X-ray photoemission spectroscopy
(SXPS) spectra of the valence band of the LiNi,,Co,,Mn,,0, cathode as the
function of the charging voltage. (g) The X-ray absorption near edge
structure (XANES) spectra of the LiNiy,Co,,Mn,,;0, cathode as the function
of the charging voltage. Part f and g were reproduced with permission of
Ref. [91]. Copyright 2015, American Chemical Society.
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electrolyte.®” When the cathodes were exposed to the electro-
lyte, the shift of E; of the cathodes in relation to the HOMO of
the electrolyte solvent induced the oxidative decompositions
of the electrolyte solvent because the transition metal was
reduced. Actually, their vicinity in the energy levels caused the
formation of thin cathode SEI layer with the thickness of ~30 A.

Aside from the formation of surface film, the changes of
local electronic structure in the cathode could give rise to the
structural transformation of the cathode. Lin et al. discovered
that the phase transition of the LiNi, ,Mn,,Coq15Tiq0,0, cathode
when the cathode was exposed to the electrolyte (Figure 2d
and e).'”¥ In general, the divalent nickel ions preferentially
formed the cation mixing layer over the cobalt and manganese
ions because of similar ionic radius of the divalent nickel ions
with the lithium ions! Thus, this result indicated that
spontaneous reductions of the nickel ions among transition
metal ions (from the trivalent nickel ions to the divalent nickel
ions) caused the formation of surface reconstruction layer,
considerably increasing the charge transfer resistance.

More seriously, the local electronic structure of the cathode
was highly evolved during charging process."®*? Figure 2f
presents the valence band structure in LiNiy,Coy,Mng;0,
cathode as a function of state of charge (SOC). As increasing
the SOC, the overall valence band was strongly modified.
Considering that the valence band structure is strongly related
with the surface composition, the evolution of the valence
band structure was ascribed to the formation of surface layer
consisting of organic species during charging process.®”
Furthermore, only divalent nickel ions existed at all SOC state,
which implies that the trivalent and tetravalent nickel ions were
spontaneously reduced to the divalent nickel ions due to the
Jahn-Teller distortions in tri- and tetra-valent nickel ions (Fig-
ure 29).®**¥ The spontaneous transition metal reductions gave
rise to the phase transition, which was accompanied by the
oxygen containing species such as O,, 0,7, and O~ These
species could easily react with the electrolyte and accelerate
the thermal runaway of the battery, strongly threatening the
battery safety.%7-102

2.2. Binder and Electrolyte Decomposition

As discussed earlier, the interfacial reactions between the
nickel-rich cathode and electrolyte originated from the sponta-
neous reductions of the transition metal ions. The reduction of
the transition metal ions facilitated the catalytic decomposi-
tions of the electrolyte solvent, creating the organic SEI layer
consisting of carboxylate (O-C=0) and semi carbonates
(ROCO,Li) as shown in Figure 3a."%3'%-1%! The decompositions
of the electrolyte solvent were accompanied by the gas
generation such as CO,, CO, and CH,."®'”""" Furthermore, it
has been reported that the decompositions of the solvent were
enhanced with increasing the temperature.'®''? Shikano et al.
analyzed the formation of organic SEl layer in the Li-
Nig73C0q17Al0100, cathode after the electrochemical test at
different temperatures.'®™ With increasing the temperatures,
the intensity of the organic SEI layer components such as semi-
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Figure 3. Formation of the cathode SEl layer: (a) A Schematic illustrating the
dynamic behavior of the cathode-electrolyte interface. Reproduced with
permission of Ref. [103]. Copyright 2005, Elsevier. (b) C,, and O, high-
resolution hard X-ray photoemission spectroscopy (HX-PES) spectra of the
LiNig,3C0q.1,Al5100, cathode before and after the electrochemical test with
increasing temperature from the room temperature to 80°C, indicating the
formation of organic compounds at the cathode surface. Reproduced with
permission of Ref. [105]. Copyright 2007, Elsevier. (c) Relative amounts of the
Li,CO; in the LiNiy5C04;5Aly0s0, cathode during first charging and discharg-
ing process with different temperature and voltage. Reproduced with
permission of Ref. [112]. Copyright 2018, American Chemical Society. (d) X-
ray photoemission spectroscopy (XPS) spectra of the pristine LNM and Li,O
coated LNM cathode after 100 cycles at the room temperature. Reproduced
with permission of Ref. [119]. Copyright 2014, The Electrochemical Society.
(e) HAADF-STEM images of the NCM622 cathode before and after the
electrochemical test, revealing that the severe micro-cracks were generated
inside the cathode particle. (f) Energy dispersive X-ray spectroscopy (EDX)
mapping results of the NCM622 after 300 cycles at 60°C. Part e and f were
reproduced with permission of Ref. [40]. Copyright 2015, American Chemical
Society.

carbonate and poly-carbonates type compounds significantly
increased (Figure 3b). In particular, the lithium carbonate and
carbonate containing organic compounds substantially in-
creased at the temperature over 60°C, suggesting that the
catalytic decompositions of the electrolyte solvent were
facilitated at the temperature >60°C.

Along with the electrolyte solvent, the LiPF, salt in the
electrolyte was also decomposed under the presence of
moisture during battery cycling, forming the LiF and HF."'® The
LiF on the cathode materials tend to hinder the lithium-ion
migration."™ Furthermore, the oxygen species that were
formed by the phase transition of the nickel-rich cathodes
could react with the LiPF, salt, which forms the Li,PF,0, type
compound.’’'® Recently, Lebens-Higgins et al. demonstrated
that the decomposition of the LiPFy salt exhibited strong
correlation with the battery operation temperature.”'? They
found that the by-products formed by the LiPF; breakdown
existed at the room temperature above 4.25V, however, the
thermal aggravation strongly promoted the salt decomposi-
tions at the lower voltage.

With respect to the residual lithium compounds, they were
formed by the spontaneous reduction of the trivalent nickel
ions to the divalent nickel ions. It has been observed that the
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residual HF, resulting in the formation of P—O—F bond
containing compounds and LiF species."”""*""'® Such decom-
positions of the residual lithium compounds were highly
facilitated as increasing the charge cut-off voltage in the cell
(Figure 3¢)."'? After first charge, the small amount of the Li,CO;
was reformed during the discharge process. To date, the
detailed mechanisms regarding the reformation of the Li,CO,
have not been clearly revealed. However, the existence of the
Li,CO; on the cathode results in the sluggish kinetics for the
lithium ions and electrochemical reaction heterogeneity during
the electrochemical test."'®""”! In addition, the residual lithium
compounds could react with the PVdF during electrochemical
cycling, which results in the LiF formation.”®'"*""9 Recently,
Cho etal. investigated the correlations between the PVdF
binder and residual lithium compounds in the LiNiy;Mn,;0,
(LNM) cathode by artificially coating the lithium oxide (Li,0).""”
During air storage, the Li,O coated LNMO cathode exhibited
significant increase of the residual lithium compounds com-
pared to the pristine LNM. These unstable surface properties
gave rise to the severe capacity fading in the Li,O coated LNM
cathode. After the electrochemical test, all PVdF binder were
decomposed into the LiF in the Li,O coated LNM cathode; for
comparison, the decomposition reactions were mitigated in the
pristine LNM (Figure 3d). The progressive formation of the LiF
layer on the cathode could block the lithium-ion diffusions and
deteriorates the electrochemical performance.

The anisotropic volume changes of each primary particle in
the nickel-rich cathode materials could induce the micro-crack
generation inside the cathode particles, facilitating the pene-
tration of the electrolyte into the crack.""'" The newly exposed
primary particles could continuously react with the penetrated
electrolyte, which forms the cathode SEl layer at the cracked
site."**? Figure 3d shows the morphologies of the Li-
Ni,6C0,,Mn,,0, (NCM622) cathode before and after the electro-
chemical test. After 300 cycles at 60°C, the NCM622 exhibited
severe micro-crack evolutions at overall cathode particle. Upon
close examination of the cycled cathode, the cathode SEI layer
was formed at the cracked site where the lithium-ion transport
was severely deteriorated (Figure 3e). Moreover, the degree of
the micro-crack evolution exhibited strong dependence on the
state of charge (SOC) of the cathode. As increasing the SOC in
the cell, the micro-crack was severely generated inside the
cathode particle."*'* This was ascribed to the increase of the
amounts of the extracted lithium ions, causing large volume
changes of each primary particle. More seriously, the penetra-
tion of the electrolyte into the cracked site was accompanied
by the structural transformation of the cathode from the
layered to the rock-salt like structure.’ As discussed earlier,
these unstable structural characteristics originated from the
spontaneous reductions of the nickel ions (from the tri/
tetravalent to the divalent nickel ions).
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2.3. Transition Metal Dissolution

The acidic species such as the HF that was formed by the
decompositions of the LiPF; salt and PVdF binder could
dissolve the transition metal ions in the cathode
structure.?>26°1121122 Tg date, it has been known that the
trivalent manganese ions among the transition metal ions were
preferentially dissolved from the cathode, which was attributed
to the structural instability of the manganese ions.'”'37%8 The
Jahn-teller distortions of the trivalent manganese ions gave rise
to the disproportionation reactions (2Mn**—Mn** 4 Mn*"),
and the divalent manganese ions were extracted from the
cathode."™? Li etal. clearly discovered that a variety of
compounds were created at the surface of the Li-
Nips;C001,MNy,,0, cathode after long-term cycling.” After
3,000 cycles at room temperature, the acidic species signifi-
cantly dissolved the transition metal ions as well as the lithium
ions at the cathode surface where the lithium fluoride and
manganese fluoride were formed (Figure 4a). Furthermore, the
intensity of these fluoride compounds increased with increas-
ing cycle number as shown in Figure 4b. The unwanted fluoride
containing compounds could degrade the battery performance
because such compounds impede the charge transfer reactions
at the cathode surface.!""*

Furthermore, the dissolved transition metal ions could also
degrade the conducting material such as the carbon black in
the electrode, lowering the electronic conductivity of the
electrode.®™¥ The passivation of the conducting agent
originated from the mutual exchange of surface species such as
the transition metal fluoride between the cathode and
conducting agent. More seriously, this phenomenon occurred
when the electrode was only exposed to the electrolyte and
was highly evolved during the electrochemical test. Li et al.
demonstrated that dynamic behavior of the cathode-electro-
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Figure 4. Passivation of the cathode electrode by transition metal dissolu-
tion: (a) lllustrative ToF-SIMS chemical mapping results of the Li2t, TLiF T,
’LiF,”, MnF;” on the LiNigg,C0,1,Mn,,0, cathode after 3,000 cycles at the
room temperature. (b) ToF-SIMS spectra of the “LiF,” and MnF;~ fragments
after 100 cycles and 3,000 cycles at the room temperature. Part a and b were
reproduced with permission of Ref. [29]. Copyright 2017, American Chemical
Society. (c) ToF-SIMS spectra collected from the pristine LiNi,¢,C0g;,MNg 5,0,
cathode (10 wt.% carbon black) and the 30-days aged LiNiy4,C0,1,Mn, 5,0,
cathode (1 wt.% and 10 wt.% carbon black), implying the mutual exchanges
of the organic and inorganic compounds between the cathode and carbon
black. Reproduced with permission of Ref. [28]. Copyright 2017, Macmillan
Publisher Limited.
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lyte interface through region-of-interest sensitive secondary ion
mass spectroscopy (SIMS).”® When the electrode was immersed
in the electrolyte for 30 days, the intensity of the C,F and COF,
compounds increased compared with pristine electrode as
presented in Figure 4c. The surface species responsible for C,F
and COF; could be formed by (1) direct HF attack at the
conducting agent or (2) acidic species attack at carbonated
based electrolyte. Interestingly, such compounds were also
observed at the cathode surface, indicating that the fluorine
containing organic compounds such as CF and COF; were
migrated from the conducting agent to the cathode surface. In
addition, when the amount of conducting agent was reduced
from 10wt.% to 1 wt%, the intensity of the organic com-
pounds in the cathode particle decreased, which reveals that
the fluorine containing organic compounds were mainly
created from the direct attack of acidic species at the
conducting agent. In terms of the metal fluoride compounds, it
was also evident that the active mass dissolution product such
as LiF and MnF, were also migrated from the cathode towards
carbon-binder interface regions. It is noteworthy that the
intensity of the metal fluoride compounds was larger in the
electrode with 10 wt.% of the conducting agent than that with
1 wt.% of the conducting agent. This result apparently implied
that the conducting agent with larger surface area than the
nickel-rich cathode served as an efficient HF scavenger
compared to the cathode materials. Hence, it is essential to
consider the cathode surface microstructure in combination
with the proper electrode design for achieving outstanding
electrochemical performance.

Aside from the degradation of the cathode and conducting
agent, the dissolved transition metal ions from the cathode
could deteriorate anode integrity. It has been known that the
transition metal crossover from the cathode to the anode side
could result in the severe capacity fading of the full-cell
equipped with the nickel-rich cathodes.?>'**'%'3% Dyring the
battery cycling, the dissolved transition metal ions from the
cathode side migrated into the anode side and were deposited
on the anode'®123125127.136137 Tha deposited transition metal
ions promoted the decompositions of the electrolyte solvent
during the electrochemical test.'"” The facilitated electrolyte
solvent decompositions at the anode side could form unstable
anode SEI layer with thick and non-uniform structure, hindering
the lithium-ion transport.”*'* |n addition, the extracted
transition metal ions provided the vacant site for the migration
of the lithium ions into the vacant transition metal sites,
therefore, the Li/Ni disordering was facilitated.®*? With increas-
ing the upper cut-off voltage (UCV) of the full-cell, the
transition metal dissolutions were accelerated due to the
enhanced nucleophilic reaction between the cathode and
electrolyte. More recently, Gilbert et al. intensively investigated
the correlations between the transition metal dissolutions and
capacity fading of the full-cell using LiNi,sCoy,Mn,;0, cathode
at different UCV (4.1, 4.2, 4.3, and 4.4 V)."® As increasing the
UCV of the cell, the cells exhibited poor electrochemical
performance (Figure 5a). Figure 5b shows the dissolved tran-
sition metal concentrations on the cycled graphite anode.
Below the UCV of 4.3V, the manganese ions were the most
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Figure 5. Deterioration of anode microstructure: (a) Relative discharge
capacity loss of the LiNiysCo,,Mn,;0,/graphite full-cell at the charge cut-off
voltage from 4.2 to 4.5 V. (b) Relative weight fraction of the dissolved
transition metal ions at the graphite anode at charge cut-off voltage from
4.2 to 4.5 V. The control cell was held for 900 h at 3.3 V. Part a and b were
reproduced with permission of Ref. [128]. Copyright 2017, Journal of The
Electrochemical Society. (c) The scanning electron microscopy (SEM) images
of the pristine graphite anode and the cycled graphite after the electro-
chemical test from the full-cells with and without transition metal salt
additives. Reproduced with permission of Ref. [126]. Copyright 2014, The
Electrochemical Society. (d) ToF-SIMS spectra of the graphite anode after
3,000 cycles at the room temperature. (e) Depth profile ToF-SIMS spectra of
the graphite anode regarding the lithium containing compounds after 3,000
cycles at the room temperature. Part d and e were reproduced with
permission of Ref. [29]. Copyright 2017, American Chemical Society.

unstable among the three transition metals, which revealed the
highest concentrations on the graphite anode. Interestingly, at
the UCV>4.4V, the dissolved transition metal ions found on
the anode exhibited similar stoichiometric characteristics
(Ni:Co:Mn=50:20:30) compared with the cathode material
(LiNig 5C0q,Mny30,). This result implied that the newly exposed
primary particles formed by micro-crack evolution were prone
to reaction with the acidic species. The enhanced transition
metal dissolutions at high UCV contributed to the severe
capacity fading of the full-cell, which could be attributed to the
irreversible lithium consumption at the anode side.

To better understand the morphological change of the
anode SEI layer triggered by dissolved transition metal ions,
Fuller et al. evaluated the full cell equipped with the LiNi,;Co;,
sMn,;0, cathode and graphite anode by artificially adding the
transition metal (TM) salts as the electrolyte additive.'* The
cycled graphite anode that was evaluated using the TM salts
additive showed rough surface morphology; for comparison,
the cycled anode with the standard electrolyte retained smooth
surface (Figure 5¢). Upon close examination of the cycled
graphite anodes, the graphite anode with the standard electro-
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microstructure in the anode contributed to large overpotential
and capacity fading during the electrochemical test.!"*5-'4%!

More critically, after the long-term cycling, the metallic
lithium (dead lithium) was detected on the cycled graphite
anode (Figure 5d). The metallic lithium deposition on the
anode causes severe capacity and power loss in the full-cell,
originating from the irreversible lithium consumption on the
graphite anode during the electrochemical cycling.*" In
addition, the formation of the metallic lithium microstructure
could give rise to the internal short circuit of the battery."*? Li
et al. demonstrated that evolution of the metallic lithium on
the anode originated from the dissolved manganese ions.””
They revealed that the dissolved manganese ions promote the
disruption and additional formation of the anode SEI layer, and
the unstable anode SEl layer induced the metallic lithium
deposition because of the increased interfacial resistance. As
shown in Figure 5e, the lithium elements were distributed as
the different compounds such as the SEI layer component (LiF)
and metallic lithium at the cycled anode. The organic SEI layer
components locally existed at the surface of the graphite-
electrolyte interface; for comparison, the metallic lithium was
formed underneath the anode SEI layer on extensively cycled
anode. Of particular note is that the metallic lithium was
formed under normal electrochemical test conditions (at
voltage ranged from 3.0 to 42V and room temperature)
without any electrochemical strain such as the fast charge and
overcharge. Therefore, stabilizing the cathode-electrolyte inter-
face is a key issue for high energy and safe LIBs.

3. Strategies to Stabilize the Cathode-
Electrolyte Interface

3.1. Doping

To mitigate the cathode reactivities with the electrolyte, the
surface/bulk doping is the simplest approach among a variety
of strategies. Among many candidates for the bulk doping, the
incorporation of electrochemically inactive elements into the
cathode structure is necessary to ensure the interfacial stability.
To date, a wide range of the elements such as the Al%*"'*
Ti," Mo,®¥ and Nb"® have been substituted with the nickel
ions in the nickel-rich cathode materials. Among such elements,
Al is the most appealing element because of their low cost. In
case of the Al doping, the AP" ions were preferentially located
at the nickel site compared with the cobalt and manganese
site, thereby decreasing the amount of nickel ions at the
cathode surface.®" Furthermore, after the electrochemical test,
the AP* jons in the cathode structure reacted with the acidic
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species, which forms nano-sized LiAlO,, AlF;, and LiAIF, with
high ionic conductivity.®" These ionically conductive com-
pounds did not hinder the lithium-ion transport at the cathode
surface, which was fundamentally different to the phosphorus
and fluorine containing natural cathode SEI layer. From the
structural aspect, the A" ions mitigated the lattice oxygen
extractions during the delithiation process."* The prevented
oxygen evolution from the cathode structure suppressed the
phase transition from the layered to the rock-salt like structure.
Overall, the Al doping into the nickel-rich cathode materials
contribute to the structural stability as well as interfacial
stability.

Moreover, the introduction of the electrochemically inactive
dopants into the bulk lithium site could also contribute to the
stable interfacial characteristics in the nickel-rich cathode
materials. The Na®**” and Mg®*>* were representative dopants
for the substitution of lithium site because the ionic radius of
the Na™ and Mg*" ions was similar with the lithium ions. The
incorporation of the Mg®" ions into the lithium site reinforced
the interatomic bonding strength between transition metal
layer and oxygen layer, preventing drastic lattice shrinkage
during lithium de-intercalation."**'*""  Furthermore, at the
charged state, the Mg?" ions in the lithium site suppressed the
structural transformation by inhibiting the spontaneous reduc-
tion of the tetravalent nickel ions to the divalent nickel ions.'*®
The enhanced structural stability reduced the exothermic
reaction with the electrolyte, and the onset temperature about
the exothermic reaction shifted towards the higher
temperature.® Recently, Kim et al. enhanced the structural/
interfacial stability of the LiNiO, cathode by doping the Na™
ions in the lithium site.’” They demonstrated that the Na* ions
in the cathode structure suppressed the charge disproportiona-
tion reactions of the trivalent nickel ions (2Ni*"—Ni*" +Ni*"),
which decreased the Li/Ni disordering. In addition, the Na™
ions that were served as the pillar layer in the lithium site could
guarantee the stable interfacial structure because of the
restrained spontaneous reduction of the tetravalent nickel ions
at fully charge state.

Furthermore, the surface doping approach in the nickel-rich
cathode materials could be also effective in stabilizing the
cathode-electrolyte interface. Many researchers found that the
large amounts of manganese ions at the cathode surface
enhanced the structural/thermal stability by mitigating the
phase transformation from the layered to the rock-salt like
structure.'5Y

3.2. Concentration Gradient

Although the introduction of the electrochemically inactive
dopants into the nickel-rich cathodes greatly enhanced the
structural/interfacial stability, they were not electrochemically
oxidized and reduced during battery cycling, causing the
decrease of the energy density. This limitation turns the
researchers’ highlight into the introduction of the manganese
concentration gradient at overall cathode particle while
maintaining the cathode compositions. The manganese com-
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positions gradually increased towards the cathode surface; for
comparison, the nickel decreased from the core to the surface
part. It is noteworthy that the nickel-rich cathodes with the
concentration gradient structure exhibited improved structural/
chemical stability without reducing reversible capacity by
changing the local compositions. The gradual compositional
changes in the cathodes gave rise to the morphological
changes of the primary particles. The nickel-rich cathodes with
the concentration gradient consisted of the radially aligned
primary particles towards the core part, which was entirely
different with the conventional nickel-rich cathodes with
randomly oriented primary particles."® More importantly, each
aligned primary particle was oriented along the (003) plane,
hence facilitating the lithium-ion transport."* This high quality
layered structure mitigated the micro-crack generation inside
the cathode particle because each primary particle exhibited
isotropic volume changes during the charging and discharging
process."**'** With respect to the interfacial stability, the large
amount of the electrochemically inactive tetravalent manga-
nese ions at the cathode surface could suppress the manga-
nese ion dissolutions."® Furthermore, the lower surface area of
the nickel-rich cathodes with concentration gradient than the
conventional nickel-rich cathodes could reduce the contact
area with the electrolyte, thus improving the chemical
stability."***”) The morphological integrity also mitigated the
cathode reactivities by preventing the penetration of the
electrolyte inside the cathode particle. Recently, Sun etal.
explicitly demonstrated that the LiNiy¢;C0,;3Mng,,0, cathode
with advanced two-sloped concentration gradient retained
stable interface compared with the conventional nickel-rich
cathode materials.'**"%" After the storage test at fully charged
state of 4.3V for 4 weeks, the developed LiNij¢Coq13MnN, 5,0,
cathode showed much lower amount of the dissolved
manganese ions (~1ppm) compared with the Li-
NiggsC0g.13MNy,0, without the concentration gradient (~
3 ppm). Such stable cathode materials showed the outstanding
electrochemical performance in the full-cell configuration with
the capacity retention of ~88% after 1,500 cycles.

3.3. Porous Structure

The micro-crack evolutions could be delayed through solution
based coating method; however, such cracking formation is not
completely prevented because of the anisotropic volume
changes of each primary particle in the nickel-rich cathode
materials with aggregated particle shape. Hence, the morpho-
logical collapse during the electrochemical test have remained
as inevitable issues in the nickel-rich cathodes. To overcome
these issues, many researchers have proposed the porous
structured cathode materials to make buffer space for volume
changes of the primary particle."**'” For example, Kim et al.
synthesized the porous structured LiNiysCoy,Mny,0, (NCM)
cathode using the polymeric bead clusters during the co-
precipitation."®" In terms of the synthetic procedure, they
initially added the polystyrene bead (PSB) as the seed into the
co-precipitation reactor, then the transition metals hydroxide
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grew on the PSB. During the lithiation process, the PSB was
carbonized, inducing the spontaneous reduction of the
trivalent nickel ions to the divalent nickel ions. The internal
pore in the PSB-NCM caused the accommodation of the
generated strain during cycling, leading to morphological and
structural integrity. From the interfacial aspect, the intrinsically
included inner pore space facilitated the side reactions with the
electrolyte, leading to higher film resistance than the conven-
tional nickel-rich cathode at the initial cycle (<50 cycles).
However, as increasing the cycle number, the interfacial
resistance was stably maintained in the PSB-NCM; for compar-
ison, the conventional nickel-rich cathode exhibited significant
increase of the interfacial resistance because of the severe
cracking generations. This result clearly indicated that the
morphological robustness in the PSB-NCM during the electro-
chemical test prevented additional cathode SEI layer formation.
The enhanced material integrities allowed outstanding electro-
chemical performance at the high temperature cycling test
compared with the conventional nickel-rich cathodes.

3.4. Surface coating

The nickel-rich cathode materials with the concentration
gradient showed considerable progress in terms of the electro-
chemical performance. However, the nickel-rich cathodes with
the concentration gradient did not retain the surface protective
layer, which could deteriorate the interfacial stability of the
cathode materials during the electrochemical test. This limita-
tion allowed the researchers to focus on the surface coating
such as metal oxide,“648551331627163) mata| phosphate,®6'641%
and lithium reactive coating materials.*-*24431-2341221 | terms
of the metal oxide, the metal oxide coating materials could
mitigate the parasitic redox reaction with the electrolyte.'®®
Furthermore, the metal phosphate such as AIPO,"" Ni,
(PO,),"%® Cos(PO,),"* and MnPO,"® suppressed the surface
degradation because of the protection of the cathode materials
by the metal phosphate coating layer. Unfortunately, such
coating media exhibited ionically and electronically insulating
properties, resulting in the increase of the charge transfer
resistance."” Thus, the critical consideration of the coating
material with respect to the conductivity and structural
compatibility with the cathode materials were necessary for
enhancing the electrochemical performance. For example, the
lithium phosphate (Li;PO,) is a most appealing coating material
because it showed high ionic conductivity (~6x108Scm™)
and mitigated the cathode reactivities with the
electrolyte."'"" Jo et al. reported that the introduction of the
uniform Li;PO, nanolayer with the thickness of <10 nm into
the LiNigsCo,,Mny,0, (NCM622) greatly improved the interfa-
cial stability.'™ As a phosphate source, they utilized the
phosphoric acid that could react with the residual lithium
compounds such as LIOH and Li,CO;. The one phosphorus
elements could react with three lithium atoms to create the
lithium phosphate (3LiOH or 3/2Li,CO;+ (PO,)* —Li;PO,), sig-
nificantly reducing the residual lithium compounds (Figure 6a).
The incorporation of 1wt.% Li;PO, coating layer into the
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Figure 6. Homogeneous surface coating: (a) A schematic of the formation
mechanism of the Li;PO, coating layer. (b) Room temperature cycle
performance of the bare and Li;PO, coated NCM622 in the voltage ranged
from 3.0 to 4.3 V. (c) ToF-SIMS results of the bare and Li;PO, coated NCM622
after 150 cycles at the room temperature. Reproduced with permission of
Ref. [122] Copyright 2014, Springer.

NCM622 substantially decreased the residual lithium com-
pounds with reduced Li,CO; content from 3,284 ppm to
738 ppm and LiOH content from 1,736 ppm to 1,197 ppm. The
decreased amount of residual lithium compound in combina-
tion with the ionically conducting lithium phosphate coating
layer contributed to outstanding electrochemical performance.
The cycle stability of the Li;PO, coated NCM622 was consid-
erably enhanced with the capacity retention of ~94.1% after
150 cycles at room temperature compared with the pristine
NCM622 with ~76.1% of original capacity (Figure 6b). Notably,
the lithium phosphate nanolayer stably protected the cathode
surface against the electrolyte during the electrochemical test
(Figure 6¢). In terms of the mechanisms for improved interfacial
stability, the lithium phosphate adsorbed the moisture in the
electrolyte, mitigating the formation of acidic species during
the electrochemical cycling. Furthermore, the small amount of
the acidic species formed by the LiPF; salt decompositions
easily reacted with the lithium phosphate, forming the Li,POF,
type compounds. Importantly, the functions of the lithium
phosphate about scavenging the moisture and acidic species
greatly reduced the transition metal dissolutions from the
cathode host structure. In addition, the reduced residual
lithium compounds in the Li;PO, coated NCM622 suppressed
the reactions with the electrolyte, which results in the
decreased LiF compounds.

Along with the surface coating layer, it has been reported
that the surface protective layer combined with the doping
could guarantee the interfacial stability in the nickel-rich
cathode materials.?344144513 Eor example, the vanadium-
based surface treatment was performed in the Li-
NigC00.15Al50s0, (NCA) cathodes (Figure 7a).*" Remarkably, the
multi-valent vanadium ions reacted with the residual lithium
compounds during the annealing process, ensuring the inter-
facial stability by mitigating the reactions with the HF.
Furthermore, the formation of the electrochemically inactive
vanadium oxide such as the VO, and V,0; on the NCA cathode

316 © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim


http://orcid.org/0000-0002-3890-1432

Chemistry

Reviews Europe
Batteries & Supercaps doi.org/10.1002/batt.201900131 Soctes ustohing
a . even after long-term cycling, thus suppressing the additional
ot N:"':D’ i b formation of the resistant layer inside the cathode.
o®, [t*:v 5-] As discussed earlier, the solution based coating approaches

MR D,
Duapersed i

G-layer coating

o

Annealing

. Primary particie
. Coatng layer

Figure 7. Uniform coating layer in combination with the doping: (a) A
schematic illustration of the formation of the vanadium containing coating
layer in the nickel-rich cathode materials with the formation mechanism of
the coating layer. Reproduced with permission of Ref. [41]. Copyright 2015,
Royal Society of Chemistry. (b) A schematic illustrating the formation of the
glue layers on the nickel-rich cathode materials. Reproduced with permission
of Ref. [44]. Copyright 2016, Wiley

significantly suppressed the side reactions with the electrolyte.
Importantly, the tetravalent vanadium ions were doped into
the transition metal sites in the cathode structure, creating the
vanadium-rich surface layer with the thickness of ~17 nm.
Notably, this nanolayer reduced the thickness of cation mixing
layer from ~15nm to ~2nm, which is responsible for the
stable surface structure. Initial thin cation mixing layer was
stably maintained even after 200 cycles at 60 °C. This indicated
that the spontaneous reduction of the trivalent nickel ions to
the divalent nickel ions was highly suppressed, implying that
the vanadium coating could assure the interfacial stability.
However, considering that the micro-cracks were continu-
ously evolved in the nickel-rich cathode materials during the
charging and discharging process, it is essential to protect
newly exposed primary particle to the electrolyte for improving
the chemical stability of the cathode. For this purpose, the
solution based coating method have been conducted using
transition metal containing precursors because the ionized
transition metal ions could form coating layer at overall
cathode particles. In particular, the cobalt containing structures
such as the LiCoO, and Li,CoO, (0<x< 1) as the coating layer
could enhance the mechanical strength of the cathode particle
by decreasing binding energy between each primary particle
(Figure 7b).**4 Remarkably, the increased mechanical strength
of the cathode particle allowed the morphological integrity

Batteries & Supercaps 2020, 3,309-322 www.batteries-supercaps.org

considerably improved the interfacial stability, however, all of
the primary particles could not be protected against the
electrolyte due to the non-uniform pore distribution in the
cathode particle. To effectively stabilize the newly exposed
primary particles, Kim etal. incorporated the artificial SEI
compounds, which could be electrochemically rearranged, in
the LiNipg,C0g14Al50,0, (NCA) cathode material.”” In terms of
the synthetic process, they mixed the NCA cathode with the
cobalt phosphate as the coating precursor, which formed the
artificial SEI compounds and transition metal concentration
gradient at the surface (Figure 8a). The initial artificial SEI
compounds consisting of the phosphorous locally existed with
the thickness of ~200 nm only at the surface of the NCA as
shown in Figure 8b. Notably, the artificial SEI compounds
initially existing on the cathode could be electrochemically
rearranged along grain boundaries between each primary
particle during battery cycling. This phenomenon was ascribed
to the reaction between the artificial SEI compound and the
by-products such as acidic species and moisture in the electro-
lyte. As a result, initial artificial SEI compounds were trans-
formed to the fluorine and hydrogen containing compounds
such as Li,PF,0, and Li,PF H, during the cycling. After only
formation cycle, the newly created artificial SEI layer was found
inside the cathode particle with the thickness of ~30nm
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Figure 8. Incorporation of the artificial SEl layer: (a) A schematic illustration
of the formation mechanisms of the artificial SEI compounds with their
electrochemical rearrangement phenomenon during the battery cycling. The
HAADF-STEM images of (b) pristine ASL-NCA and (c) the ASL-NCA after
formation cycle with their EDX mapping results. (d) A HAADF-STEM image of
the ASL-NCA after 200 cycles at 60 °C, indicating that the initial artificial SEI
compounds were homogeneously distributed at the cathode particle. (e)
Cycle performance of the pristine NCA and the ASL-NCA at 60 °C with their
voltage profiles at 1, 50, 100, 150, 200 cycles, where the voltage ranged from
2.8 to 4.4 V. Reproduced with permission of Ref. [51]. Copyright 2018, Wiley.
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(Figure 8c). Interestingly, the artificial SEI layer was significantly
developed after 200 cycles at 60 °C with the increased thickness
from ~30 to ~100 nm (Figure 8d). Overall, the electrochemi-
cally rearranged artificial SEI layer could protect the newly
generated primary particle by micro-crack evolution against the
electrolyte. The uniform artificial SEI layer in the artificial SEI
layer incorporated NCA (ASL-NCA) allowed the outstanding
electrochemical performance at the high temperature of 60°C.
The ASL-NCA retained stable electrochemical performance with
the capacity retention of ~81% after 200 cycles compared to
the NCA with that of ~51% of original capacity (Figure 8e).

Implantation of advanced surface engineering into the
nickel-rich cathode materials have greatly enhanced the
structural/interfacial stability of the cathodes. However, in the
full-cell equipped with the nickel-rich cathodes, the stable SEI
layer on the anode side is a key issue for the development of
the high energy full-cell.?*'#131721 Aq discussed earlier, the
transition metal crossover from the cathode to the anode side
determined the anode microstructure. In particular, the man-
ganese ions mainly affected the anode integrity during the
electrochemical cycling."”'® Manthiram et al. found that the
Al doping into the LiNiyg,Coq1,Mng,,0, (NCM) cathode with the
concentration gradient contributed to the stable anode micro-
structure after long-term cycling in the full-cell.”” The Al doped
NCM cathode exhibited the smaller content of dissolved
manganese ions than the pristine NCM cathode, mitigating the
catalytic electrolyte solvent decompositions at the anode side.
The high anode integrity led to outstanding electrochemical
performance. The cycle stability of the Al-doped NCM/graphite
full-cell was substantially improved with the capacity retention
of ~85% after 3,000 cycles compared with the pristine NCA
with that of ~ 65 %.

Furthermore, our group recently found that the nickel ion
dissolution is an important parameter for achieving stable
anode microstructure in the full-cell using the nickel-rich
cathodes with nickel contents >80%.? For resolving the
nickel-ion crossover issue, the nanoscale epitaxy layer com-
bined with homogeneous transition metal concentration gra-
dient were introduced in the LiNiy,gCoy;Mny;0, (NCM)
cathode.” Through the simple dry coating method, the
nanostructured stabilizer incorporated NCM (NS-NCM) was
synthesized (Figure 9a). With respect to the synthetic process,
the cobalt hydroxide as the coating precursor was mixed with
the NCM, and the mixtures were annealed at 750 °C. During the
annealing process, the cobalt hydroxide was thermally rear-
ranged along grain boundaries between each primary particle
because the cobalt hydroxide has low nominal melting temper-
ature of ~168°C. The uniformly distributed cobalt hydroxide
formed the homogeneous transition metal concentration
gradient. Moreover, they added much larger amount of the
cobalt hydroxide (~4 wt.%) than that of the residual lithium
compounds (~1 wt.%). Such non-stoichiometric characteristics
between the cobalt and lithium ions led to the formation of
surface epitaxy layer (Figure 9b). Notably, the electrochemically
inactive Co;0, type spinel structure stabilized the cathode
structure against the acidic attack, and the Li,CoO, (0<x<1)
type spinel structure contributed to the high electronic
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Figure 9. A schematic of the synthetic procedure of the NS-NCM, showing
that thermally distributed stabilizer precursors formed the surface epitaxy
layer and homogeneous transition metal concentration gradients at the
overall cathode particle. (b) A HAADF-STEM image of the NS-NCM at the red
box in the inset image, revealing that the surface coating compound
retained the epitaxial structure. (c) Full-cell cycle performance at 45 °C, where
the voltage ranged from 2.8 to 4.2 V. HAADF-STEM images of the graphite
anodes in (d) the NCM/graphite full-cell and (e) the NS-NCM/graphite full-
cell after 500 cycles at 45 °C with their EDX mapping results. Photograph
images of the graphite anode in (f) the NCM/graphite full-cell and (g) the
NS-NCM/graphite anode after 500 cycles at 45 °C with their SEM images at
the marked red box. Reproduced with permission of Ref. [52]. Copyright
2018, Royal Society of Chemistry.

conductivity. In addition, the homogeneous transition metal
concentration gradient at overall cathode particle gave rise to
the oxidation of the divalent nickel ions to the trivalent nickel
ions, which contributed to the mitigated nickel ions dissolu-
tions. These characteristics significantly enhanced the electro-
chemical performance of the NS-NCM in the full-cell config-
uration. The NS-NCM/graphite full-cell retained much better
cycling performance than the NCM/graphite full-cell at 45°C as
presented in Figure 9c. Interestingly, the bright metallic nickel
particles were observed the cycled graphite anode in the NCM/
graphite full-cell, contributing to additional anode SEI layer
formation (Figure 9d). By contrast, inside the cycled graphite
anode in the NS-NCM/graphite full-cell, the formation of the
anode SEl layer was significantly mitigated, which was ascribed
to the restrained nickel ion crossover from the cathode side
(Figure 9e). More seriously, the unstable anode SEI layer in the
NCM/graphite full-cell caused the metallic lithium depositions
at the surface of the graphite anode because of the increased
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interfacial resistance. As shown in Figure 9f, the massive
metallic lithium with the size of ~50 um formed on overall
graphite anode. On the contrary, the cycled graphite anode in
the NS-NCM/graphite full-cell revealed the clean surface with-
out any trace of the metallic lithium, indicating that the nickel
ion crossovers mainly affected the anode integrity (Figure 99g).

3.5. Crystallinity Tuning

The intrinsic properties of the polycrystalline nickel-rich cath-
ode materials is that the cathode particles underwent the
micro-crack evolutions during the battery cycle test.””
Although above mentioned approaches could mitigate the
reactivity of the cathode particles with the electrolyte, the
newly created surface by the micro-cracks in the polycrystalline
cathode particle could eventually cause the interfacial insta-
bility after the long-term cycling test. In this regard, many
researchers have proposed the single crystalline nickel-rich
cathodes to completely prevent the  micro-crack
evolutions.””® For the polycrystalline nickel-rich cathode
materials, the anisotropic volume changes of each primary
particle caused the micro-crack evolution during the continu-
ous charging and discharging process (Figure 10a)."*" The
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Figure 10. Single crystalline nickel-rich cathode materials: Schematics of
morphological and interfacial changes of (a) the polycrystalline cathode and
(b) the single crystalline cathode during the electrochemical test. Part a and
b were reproduced with permission of Ref. [67]. Copyright 2018, Wiley. (c)
Mass spectroscopy result (m/z=32) of the polycrystalline cathode (Uncoated
NMC532, Al,O; coated NMC532, HV-coated NMC532) and the single
crystalline NMC532 at the fully charged state (4.6 V) as the function of
temperature. (d) Volume changes of the produced gas of different NMC532
and NMC622 samples when the cells were charged and held at different
voltage (4.4, 4.5, and 4.6 V). Part c and d were reproduced with permission of
Ref. [64]. Copyright 2017, The Electrochemical Society.
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collapsed particle increases the contact area with the electro-
lyte, giving rise to the formation of resistant layer such as the
cation mixing layer and cathode SEI layer." After long-term
cycling, the continuous micro-crack generations hinder the
lithium-ion transport, leading to severe capacity fading. By
contrast, the single crystalline nickel-rich cathodes do not
exhibit the cracking formation because of the isotropic volume
change during the electrochemical test (Figure 10b).*” This
indicates that the original morphology could be stably
maintained even after the long-term cycling. Of particular note
is that the morphological integrity could suppress continuous
formation of the resistant layer during the electrochemical test,
allowing outstanding electrochemical performance.

Recently, Xiong etal. compared the oxygen release
between polycrystalline and single crystalline LiNi, sMn,;Co,,0,
(NMC532) cathode through thermogravimetric analysis coupled
with mass spectrometry (TGA-MS).®¥ The phase transition from
the layered to the rock-salt like structure generated oxygen
species, which induces the oxidative decomposition (pseudo-
combustion) of the electrolyte and cathode SEI layer.'*'%4
Such structural and interfacial instabilities have been known as
the main capacity fading mechanisms of the nickel-rich
cathode materials. To measure the released oxygen gas from
the cathode materials, all cells were charged at 4.6 V, and the
temperature of the cells increased to 350°C (Figure 10c). The
polycrystalline NMC532 cathode (uncoated, Al,CO; coated, and
HV coated sample) revealed the lower onset temperature which
the oxygen gas stated to be evolved than the single crystalline
NMC532 cathode materials. In addition, to further investigate
the stability of the cathode materials at the high voltage, the all
cells were charged at 4.6 V and held for 420 h (Figure 10d). As
expected from the thermal aggravation test, the single
crystalline NCM523 evolved the least oxygen gas among all
samples. These results clearly suggest that the lack of grain
boundaries in the single crystalline cathodes could limit oxygen
release, assuring the battery safety even at the high voltage.

4. Summary and Outlook

In this review, we have summarized the dynamic behavior of
the nickel-rich NCM cathode-electrolyte interface and a variety
of strategies to mitigate the cathode reactivity with the
electrolyte. The spontaneous reduction of the transition metal
ions in the cathode structure have a crucial role in determining
the interfacial stability, which was attributed to the oxidative
electrolyte solvent decompositions. When the cathodes were
only exposed to the electrolyte without the electrical bias, the
thin cathode SEI layer was formed. During the battery cycling,
this thin SEI layer was significantly developed, impeding the
lithium-ion transport. With respect to the structural aspect, the
reduction of the nickel ions facilitated the irreversible phase
transformation at the cathode surface. Furthermore, the acidic
species that were formed by the decompositions of the LiPFg
salt and PVdF binder could dissolve the transition metal ions
from the cathode side, which passivates both the cathode and
conducting agent. More seriously, the extracted transition
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metal ions were redeposited in the anode side, where the
formation of anode SEI layer was promoted by the enhanced
electrolyte decomposition reactions. In addition, the increased
interfacial resistance by the unstable anode SEI layer could
cause the metallic lithium depositions throughout the anode,
strongly threatening the battery safety.

Along with the unstable electrochemical properties of the
nickel ions, the nickel-rich cathodes with the morphology of
secondary particle exhibited severe cracking formation inside
the cathode particles after prolonged cycling. Such morpho-
logical collapse increases the chemical reactivity of the cathode
materials with the electrolyte, accelerating the formation of the
resistant layer inside the cathode particles. To date, the
incorporation of the surface coating layer and concentration
gradient into the nickel-rich cathode materials greatly im-
proved the interfacial stability. However, the continuous micro-
crack generation during the electrochemical test could not
completely ensure the stable interfacial structure between the
cathode and electrolyte. This limitation regarding the poly-
crystalline nickel-rich cathodes encourage the researchers to
focus on the single crystalline cathodes. The lack of grain
boundaries in the single crystalline cathodes could guarantee
the long-term cycling stability and safety issue because the
cathodes maintained the original morphology even after long-
term cycling. Finally, on the basis of this review, we believe that
the single crystalline cathode combined with the surface
coating and doping approaches is a most appealing material,
and opens a new avenue for high energy LIBs.
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