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The Escherichia coli transcriptome mostly consists
of independently regulated modules
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Kumari Sonal Choudhary 1, Laurence Yang1,6, Zachary A. King 1 & Bernhard O. Palsson 1,3,4*

Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates

gene expression. A useful description of the TRN would decompose the transcriptome into

targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine

learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets

to identify 92 statistically independent signals that modulate the expression of specific gene

sets. We show that 61 of these transcriptomic signals represent the effects of currently

characterized transcriptional regulators. Condition-specific activation of signals is validated

by exposure of E. coli to new environmental conditions. The resulting decomposition of the

transcriptome provides: a mechanistic, systems-level, network-based explanation of

responses to environmental and genetic perturbations; a guide to gene and regulator function

discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken

together, our results show that signal summation describes the composition of a model

prokaryotic transcriptome.
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The transcriptional regulatory network (TRN) senses and
integrates complex environmental and intracellular infor-
mation to coordinate gene expression of a cell. Reverse

engineering the TRN informs how an organism responds to
diverse stresses and unfamiliar environments1–3. A fully char-
acterized TRN would enable the prediction and mechanistic
explanation of an organism’s dynamic adaptation to environ-
mental or genetic perturbations.

Reconstruction of a genome-scale TRN requires a substantial
number of experiments to interrogate the binding sites for each
regulator and characterize their activities4,5. Unlike eukaryotic
TRNs, which contain highly connected co-associations6, prokar-
yotic TRNs exhibit a simpler structure; over 75% of genes in the
model bacteria Escherichia coli are known targets of two or fewer
transcription factors (TFs)7.

The TRN structure is encoded in the genome as regulator-
binding sites and is invariant to environmental dynamics. How-
ever, environmental and genetic perturbations alter the activity
states of transcriptional regulators to change their DNA-binding
affinity8, which in turn modulates the transcriptome in a
condition-specific manner9. Thus, a measured expression profile
reflects a combination of the activities of all transcriptional reg-
ulators under the examined condition. This poses the funda-
mental deconvolution challenge of separating the condition-
invariant network structure from its condition-dependent
expression state on a genome scale.

Compendia of microarray expression profiles have been
leveraged to infer TRNs by identifying shared patterns across
gene-expression profiles, rather than using direct DNA-TF-
binding information10,11. Many inference methods define groups
of genes, or modules, with similar expression profiles that are
often functionally related or co-expressed. Recently, a compre-
hensive review of 42 module detection methods showed that
independent component analysis (ICA), a signal deconvolution
algorithm, outperformed all other algorithms in identifying
groups of coregulated genes12.

ICA is a blind source separation algorithm used to deconvolute
mixed signals into their individual sources and determine their
relative strengths13. Prior application of ICA to microarray
expression data14 has identified co-expressed, functionally related
gene sets15–17 that often map to metabolic pathways18,19. A major
advantage of decomposition-based module detection algorithms,
such as singular value decomposition (SVD) and ICA, over
clustering or network inference methods is that decomposition-
based methods detect gene modules, while simultaneously com-
puting the context-specific activity levels for these gene
modules12,20. The overall expression levels, or activities, of ICA-
derived gene sets have been leveraged to classify tumor sam-
ples21–23 and connect transcriptional modules to disease states24.

Although the aforementioned studies showed that ICA tends to
identify biologically relevant transcriptional modules, the major-
ity of gene modules remain uncharacterized, limiting the utility of
ICA-derived results to interpret biological responses. Here, we
overcome this limitation by applying ICA to a high-quality RNA-
seq compendium for the well-characterized model organism E.
coli. We find that 66% of ICA-derived gene sets clearly represent
the effects of transcriptional regulators, and propose biological or
genetic explanations for an additional 27% of gene sets (leaving
only 7% uncharacterized). Our approach relies on: (1) the avail-
ability of high-quality, self-consistent, and condition-rich RNA-
seq expression profiling datasets; (2) the use of ICA to con-
currently identify regulator targets and activities; and (3)
experimental validation through the association of inferred reg-
ulator targets with observed molecular interactions and through
successful prediction of gene module activation. The elucidated
TRN structure deconvolutes transcriptomic responses of E. coli

into a summation of condition-specific effects of individual
transcriptional regulators.

Results
ICA extracts regulatory signals from expression data. In order
to extract regulatory interactions from expression data, diverse
conditions must be profiled to discriminate between the effects of
transcriptional regulators. Previous studies have compiled tran-
scriptomics data from independent research groups to study the
transcriptional states and regulation of E. coli10,25–28. Even after
resolving the significant normalization challenge with such dis-
parate datasets, many sources of variation remain that obscure
biological signals29–31. These datasets mostly contain microarray
data; RNA-sequencing (RNA-seq) data yields higher quality data
with less noise and larger dynamic range32.

We therefore compiled PRECISE, a Precision RNA-seq
Expression Compendium for Independent Signal Exploration.
This high-fidelity expression profile compendium (median
R2= 0.98 between biological replicates, see Supplementary
Fig. 1a, b) comprises 278 RNA-seq expression profiles across
154 unique experimental conditions for E. coli K-12 MG1655
and BW25113. To assemble PRECISE, we collected and
processed RNA-seq data from over 15 studies published by
our research group (see the “Methods” section), comprising
~20% of all publicly available RNA-seq data in NCBI GEO33 for
E. coli K-12 MG1655 and BW25113 (Supplementary Fig. 1c).
The datasets in PRECISE were generated in a single laboratory
and obtained using a standardized protocol, with detailed
reporting of experimental conditions and metadata to assist in
usage as a comprehensive resource (Supplementary Data 1).
This homogeneity mitigated batch effects (Supplementary
Fig. 1d, e), simplifying the data-processing pipeline (see the
“Methods” section).

We applied ICA to identify independent sources of variation in
gene expression in PRECISE. The traditional use of ICA as a
signal decomposition algorithm is illustrated in Fig. 1a. When
applied to transcriptomics data, ICA decomposes a collection of
expression profiles (X) into (1) a set of components, which
represent underlying biological signals (S), and (2) the compo-
nents’ condition-specific activities (A) (Fig. 1b, c). Each
component, represented by a column of S, contains a coefficient
for each gene that represents the effect of a particular underlying
signal on the gene’s expression level. Components do not contain
information on the condition-specific transcriptomic state.
Conversely, ICA computes activity levels for each component
across every condition in the compendium, represented by a
row of A, to account for condition-dependent expression changes.
Each expression profile is represented by the summation over
all components, each scaled by its condition-specific activity
(Fig. 1d, e).

ICA of PRECISE produced 92 robust components that
explained 68% of the expression variation (Supplementary Fig. 1f,
g). Most gene coefficients in a component were near zero,
indicating that each underlying signal affects a small number of
significant genes (Fig. 1f). We removed genes with coefficients
below a threshold (see the “Methods” section), resulting in a set of
significant genes for each component. We defined these
condition-invariant sets of genes as i-modulons, since these genes
were independently modulated at constant ratios across every
condition in the compendium. Henceforth, we will focus our
discussion on the i-modulons extracted from the independent
components, and their respective activity levels as computed from
ICA. We note that a gene may appear in multiple i-modulons if
its expression is dependent on multiple underlying biological
signals (Supplementary Fig. 1h).
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The 92 resulting i-modulons are listed in Supplementary Table 1.
We hypothesized that each i-modulon was controlled by a
particular transcriptional regulator, and that the i-modulon activity
represented the condition-dependent activation state of the
corresponding transcriptional regulator. To test this hypothesis,
we examined the consistency between i-modulons and reported
regulons, defined as the set of genes targeted by a common
regulator, using a database of over 7000 experimentally derived
regulatory interactions for E. coli4 (Supplementary Fig. 1i, j).

We identified significant overlaps between regulons and 61 of
the 92 i-modulons. We defined these 61 i-modulons as
regulatory i-modulons (see Table 1 for a description of
30 selected i-modulons). Four regulatory i-modulons were
linked to a single sigma factor (RpoS, RpoH, FliA, and FecI),
two i-modulons were linked to a single transcriptional
attenuator (including the thiamine riboswitch)34–36, and 40
i-modulons were linked to a single TF. Fifteen regulatory
i-modulons were associated with multiple transcriptional
regulators, as described in Supplementary Table 1. Of the 31
non-regulatory i-modulons, 15 i-modulons were associated
with distinct genetic changes, such as gene knock-outs and

strain-specific differences, and 10 i-modulons were enriched in
a specific biological function or process (Fig. 1g).

I-modulons were manually curated, and named after their
associated regulator (e.g., the MetJ i-modulon) or biological
function (e.g., the Tryptophan i-modulon). The majority of
regulatory i-modulons (43 of 61) mapped to metabolic pathways
(Supplementary Fig. 2a), as previously noted18. The remaining
regulatory i-modulons represented diverse cellular responses
(Supplementary Fig. 2b, c). Detailed information for all 92
i-modulons, including gene composition, regulon enrichments,
activity levels, and upstream regulator-binding motifs, is available
in Supplementary Data 2. Additional descriptions for each
i-modulon are listed in Supplementary Note 1, and code for
i-modulon computation and exploratory data analysis are
available on Github at https://github.com/SBRG/precise-db.

Validation of I-modulon–Regulator relationships. On average,
78% of genes in a regulatory i-modulon were reported targets of
the linked transcriptional regulator(s) (Fig. 2a, b). In order to
benchmark the precision of the i-modulons generated from
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Fig. 1 ICA extracts regulatory signals from expression data. a Given three microphones recording three people speaking simultaneously, each microphone
records each voice (i.e. signal) at different volumes (i.e. signal strengths) based on their relative distances. Using only these measured mixed signals, ICA
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PRECISE, we applied the ICA workflow to 10 randomly gener-
ated subsets of a single-platform microarray compendium10,
maintaining a similar number of experimental conditions as
PRECISE (see the “Methods” section). In addition, we applied the
ICA workflow to a microarray dataset generated by a single
research group26 that contained a similar number of samples as
PRECISE. Both the proportion and precision of regulatory
i-modulons were significantly lower (Mann–Whitney U-test,
p-value < 0.05) in the microarray datasets (Fig. 2c, d). We also
applied sparse-PCA to PRECISE and the microarray dataset from
a single research group, and found significantly less overlap with
the known TRN (Mann–Whitney U-test, p-value < 0.05), illus-
trating that independence, rather than sparsity, was key to
obtaining regulatory i-modulons (Supplementary Fig. 3a, b).

Many regulatory i-modulons contained genes that were not in
the associated regulon. We hypothesized that these remaining
genes were actually regulated by the associated regulator, but the
binding sites were not experimentally determined. We tested this
claim by performing ChIP-exo37 to locate binding sites for the
TFs MetJ and CysB (Supplementary Tables 2 and 3), which
regulate methionine biosynthesis and sulfate assimilation, respec-
tively. We identified MetJ-binding sites upstream of all 17 genes
in the MetJ i-modulon (Fig. 2e). The CysB regulon was split into

the CysB i-modulon and the jointly regulated Cbl+ CysB
i-modulon (Supplementary Fig. 3c). We identified CysB-binding
sites upstream of all genes except one (iraD) in both i-modulons
(Fig. 2f). TF binding was not detected near 9 of the 11 genes that
were in the reported MetJ and CysB regulons but not in their
respective i-modulons, potentially indicating inconsistencies in
previous regulon definitions. The results from these two ChIP-
exo experiments showed that previously-unidentified regula-
tor binding sites may explain the absence of genes in low-
precision i-modulons (see Supplementary Note 1).

Application of ICA also extracted the condition-specific
activities of i-modulons, providing an additional source of
validation. I-modulon activities were centered such that all
i-modulon activities were zero for a reference condition (see the
“Methods” section). Thus, i-modulon activities under a particular
condition represented the relative up-regulation or down-
regulation of the i-modulon genes compared to the reference
condition. It is important to note that positive i-modulon
activities could either represent increased binding of transcrip-
tional activators, or derepression.

In order to validate that media perturbations predictably
altered specific i-modulon activities, we designed 10 expression
profiling experiments to conditionally activate 20 regulators. We

Table 1 Summary of 30 selected regulatory i-modulons.

I-modulon name Number
of genes

Regulator(s) Enrichment
P-value

Precision Recall Activity-TF
R2adja

Biological function of
I-modulon genes

ArcA-1 50 ArcA 9E−20 0.66 0.07 0.03 Electron transport chain
Cbl+ CysB 10 Cbl and

CysB
3E−22 0.80 0.89 0.73

0.10
Aliphatic sulfonate utilization

CdaR 10 CdaR 2E−26 0.9 1. 0.74 Glucarate catabolism
CecR 5 CecR 0 1. 1. 0.08 Related to antibiotic sensitivity
EvgA 20 EvgA 6E−21 0.5 0.63 0.06 Acid and osmotic stress

response
CysB 21 CysB 4E−32 0.76 0.52 0.28 Inorganic sulfate assimilation
FlhDC 41 FlhDC 5E−66 0.93 0.49 0.72 Flagella assembly
FliA 30 FliA 4E−54 0.97 0.45 0.87 Chemotaxis
Fnr 40 Fnr 3E−27 0.85 0.08 0.57 Anaerobic response
Fur-1 48 Fur 5E−55 0.9 0.25 0 Iron homeostasis
Fur-2 27 Fur 3E−26 0.81 0.13 0.03 Iron homeostasis
GadEWX 17 GadE and

GadW and
GadX

1E−24 0.59 0.91 0.92
0.61
0.66

Acid stress response

GlpR 9 GlpR 0 1. 1. 0.02 Glycerol catabolism
His-tRNA 9 His-tRNA

attenuation
6E−24 0.89 1. Histidine biosynthesis

Lrp 37 Lrp 1E−37 0.86 0.16 0.13 Amino acid and peptide
transport

MalT 9 MalT 3E−22 0.89 0.8 0.69 Maltose catabolism
MetJ 17 MetJ 2E−25 0.65 0.73 0.46 Methionine biosynthesis
Nac 37 Nac 7E−24 0.86 0.06 0.67 Nitrogen starvation response
NarL 29 NarL 1E−40 0.93 0.23 0.02 Nitrate respiration
NtrC+ RpoN 56 NtrC and

RpoN
3E−52 0.57 0.67 0.51

0.05
Nitrogen starvation response

PurR-1 16 PurR 2E−25 0.81 0.36 0.23 Purine biosynthesis
PurR-2 10 PurR 3E−13 0.70 0.19 0.11 Pyrimidine biosynthesis
PuuR 7 PuuR 0 1. 1. 0.7 Putrescine catabolism
RpoH 13 RpoH 6E−20 1. 0.1 0 Heat shock response
RpoS 107 RpoS 1E−18 0.37 0.13 0.43 General stress response
SoxS 41 SoxS 6E−35 0.56 0.43 0.74 Oxidative stress response
Thiamine 11 Thiamine

riboswitch
0 1. 1. Thiamine biosynthesis

XylR 13 XylR 2E−15 0.46 0.86 0.83 Xylose catabolism
YiaJ 10 YiaJ 5E−29 1. 0.91 0.07 Putative ascorbate utilization
Zinc 12 ZntR or

Zur
3E−19 0.58 1. 0

0.01
Zinc homeostasis

aR2adj is computed between the activity of the i-modulon and the expression level of the TF, as described in the Supplementary Methods. Values are in bold if the R2adj is above 0.4.
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confirmed 75% (15/20) of predicted activations through 13
i-modulons (Fig. 2g). The sign of the i-modulon activity revealed
whether the effector resulted in a net activation or repression of
i-modulon genes, which was consistent with known mechanisms
for the regulators.

Seven of the 10 experiments included dual perturbations to
simultaneously activate two regulators. In two cases, the two
regulatory effects were recognized as a single signal, resulting in
the combined i-modulons NagC/TyrR and GntR/TyrR (Supple-
mentary Fig. 3d, e). Combined i-modulons may also occur if a
single molecule activates multiple regulators (Supplementary
Fig. 3f, g). Cytidine supplementation did not activate the cytidine-
binding transcription factor CytR; however, the pyrimidine
biosynthesis PurR-2 i-modulon was activated. Although four
media additions (arginine, cytidine, galactose, and uracil) did not
activate regulon-enriched i-modulons over the reference condi-
tion, the i-modulon structure of the TRN proved robust to
additional data and displayed predictive capabilities.

ICA reveals independent modules within the PurR regulon. In
order to gain a detailed understanding of the biological roles of
individual i-modulons, we programmatically generated a sum-
mary of characteristics for each i-modulon (see Supplementary
Data 2). Figure 3 demonstrates the biological understanding to be
gained from these characteristics for two exemplary i-modulons
with significant overlap with genes in the PurR regulon (Fisher’s

exact test p-values < 1e−10), named PurR-1 and PurR-2,
respectively.

PurR is a repressor of nucleotide biosynthetic genes and is
activated by intracellular purine levels38. The PurR-1 i-modulon
contained 16 significant genes with both positive and negative
coefficients, of which 14 were related to purine metabolism (see
Supplementary Fig. 2a). The PurR-2 i-modulon contained 10
genes, of which nine were in the pyrimidine biosynthetic pathway
(Fig. 3a). Together, the two PurR-related i-modulons accounted
for 20 of the 36 genes in the reported PurR regulon (Fig. 3b).
Segmentation of regulons into multiple constituent i-modulons
was observed for other global regulators such as Fur and Crp
(Supplementary Fig. 4a, b).

The 14 genes with positive coefficients in the PurR-1 i-
modulon were associated with purine biosynthesis, with 13 genes
confirmed to be regulated by PurR. We detected the PurR binding
motif upstream of the missing gene (ghxP), suggesting that it is
regulated by PurR (Fig. 3c). Similar analysis identified 150
previously unidentified regulator-binding sites across 20 regula-
tory i-modulons (Supplementary Table 4). The two genes with
negative coefficients (add and ydhC) were expressed inversely to
the activation of the purine biosynthetic pathway; add encodes
the first enzyme in the purine-degradation pathway, and ydhC is a
putative transporter. Since the negative gene coefficient indicated
that ydhC expression responded inversely to purine biosynthetic
gene expression, we hypothesized that ydhC was a purine-related
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13483-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5536 | https://doi.org/10.1038/s41467-019-13483-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


efflux pump. In a similar fashion, we used the i-modulon
structure to generate additional information for 224 genes with
poor annotations, including 11 transporters (Supplementary
Table 5). One such prediction, yjiY, was recently independently
verified as a pyruvate transporter and renamed to btsT39.

The condition-specific activities of the PurR-related i-mod-
ulons revealed differences in purine and pyrimidine biosynthetic
gene expression (Fig. 3d). Adenine supplementation activated the
repressor PurR to decrease the activity of the PurR-1 and PurR-2

i-modulons, whereas cytidine supplementation resulted in a
decrease in PurR-2 i-modulon activity. Knock-out of PurR did
not affect the PurR-2 i-modulon activity, while de-repressing the
purine biosynthetic pathway. LB rich medium decreased both i-
modulon activities.

The relationship between the quantitative activities of the PurR
i-modulons and the expression level of purR indicated the drivers
of regulator activity. The activity of the PurR-1 i-modulon was
highly correlated (Pearson R= 0.81, p-value < 10−10) with the

purR expression level (log-TPM)
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expression level of purR (Fig. 3e). A similar relationship was
observed in 26 of 61 regulatory i-modulons (Supplementary
Table 1), 20 of which required a minimum expression level to
activate the i-modulon (See Supplementary Fig. 4c). In contrast,
the activity of the PurR-2 i-modulon was poorly correlated with
purR expression (Pearson R= 0.3, p-value= 6*10−7), and was
likely controlled by UTP-dependent reiterative transcription40

(Supplementary Fig. 4d). The low correlation between many i-
modulon activities and their corresponding regulator expression
levels specifically identified where static TRNs are inconsistent
with expression data41.

The results presented in this section demonstrate that the i-
modulon structure of the TRN revealed by ICA provides a deep
understanding of its biological functions and offers a guide to
discovery.

ICA provides answers to unasked questions. Most expression
profiles in PRECISE were designed to test specific biological
hypotheses leading to independent, self-contained studies. How-
ever, by integrating these datasets together and applying ICA, we
gained the ability to answer questions not addressed in the
individual studies.

To illustrate this concept, we examined the i-modulons
activated by the addition of 80 new expression profiles from
four recently published RNA-seq datasets42–45 (Fig. 4a). The
expression profiles were generated and processed using the same
protocol as the rest of the compendium. ICA of the original 198
expression profiles resulted in 73 i-modulons, 65 of which were
maintained upon incorporation of the 80 additional expression
profiles. Analysis of the i-modulons resulting from three nested
subsets of PRECISE confirmed that i-modulons were rarely lost
upon addition of new data (see the “Methods” section, Fig. 4b).
The 80 additional datasets activated 26 new i-modulons,
including 14 regulatory i-modulons and 9 genomic i-modulons.
The activities of each new i-modulon revealed the causative
expression profiles (Fig. 4c).

For example, one dataset included knock-outs of 10 unchar-
acterized TFs42, which generated five new i-modulons. Two i-
modulons were dominated by a single knocked-out gene
(Supplementary Fig. 4e), whereas two remaining i-modulons
(YiaJ and YieP) primarily contained genes with experimentally
determined TF-binding sites (Fig. 4d, e), revealing two new high-
confidence regulons. Knock-out of cecR produced an i-modulon
that was recently independently validated with high accuracy46.
Since the genes in the three new regulatory i-modulons had
positive coefficients and the i-modulon activity was positive upon
gene knock-out (Fig. 4c), we concluded that the TF knock-out
resulted in overexpression of these genes. Therefore, we
characterized these TFs as transcriptional repressors.

The other three datasets contained endpoint strains from
adaptive laboratory evolutions (ALEs)43–45. ALE endpoint strains
often contain many mutations whose downstream effects are
difficult to resolve47. However, most strains contained at least one
mutation in or near a transcriptional regulator that corresponded
with explainable changes in i-modulon activities (Fig. 4c,
Supplementary Table 6). Most of these regulators were well-
characterized repressors and resulted in derepression of the i-
modulon genes.

However, two i-modulons were activated in strains, where
mutations occurred within TFs with no published information
(YgbI and YneJ). The YneJ i-modulon contained six genes, of
which proQ and entC are knocked-out in the strain with highest i-
modulon activities (Fig. 4f). Three remaining genes were
divergently transcribed from yneJ, hinting at a potential regulator
binding site.

The YgbI i-modulon contained nine genes, five of which were
divergently transcribed from ygbI, and had putative functions for
four-carbon sugar catabolism48. The YgbI i-modulon was
activated during adaptation of E. coli MG1655 to growth on m-
tartrate, a four-carbon sugar. Although E. coli does not support
native growth on m-tartrate, the evolved strains were able to
utilize m-tartrate as the primary carbon source. Of the remaining
four genes, two may be explained by other mutations present in
this endpoint (see Supplementary Note 2). Therefore, we
hypothesize that YgbI is a transcriptional repressor that binds
between ygbI and ygbJ (Fig. 4f).

ALE strains often contain deletions or duplications of large
regions in the genome, which are detected as genomic i-
modulons. The Deletion-1 i-modulon resulted from a 39-gene
deletion (Fig. 4g), which included KdgR, a transcription factor
known to repress kdgT and kdgK49. These genes, along with asr,
hyi, kduD, and kduI, had negative i-modulon coefficients,
indicating that they were overexpressed when KdgR was knocked
out. Since kduD and kduI encode genes with similar metabolic
functions to kdgK (Supplementary Fig. 4f), we predict that they
are also repressed by KdgR (Fig. 4f).

When new experimental data was added to the existing
compendium, answers were revealed to questions unasked by the
original studies. Next, we show that correlations between i-
modulon activity levels can do the same by revealing relationships
between the cellular functions represented by the i-modulons.

Two i-modulons characterize the ‘Fear vs. Greed’ Tradeoff. Can
the i-modulon decomposition be utilized to understand a major
genetic perturbation of the transcriptome? Adaptive laboratory
evolution of E. coli50 revealed two distinct point mutations in
RpoB, the RNA polymerase subunit β, that shift cellular resources
towards growth-related functions (i.e. greed) away from stress-
hedging functions (i.e. fear)51.

The quantitative i-modulon activities for two RpoB-mutant
strains reflected this trade-off (Fig. 5a). Six i-modulons whose
activities significantly deviated from the wild-type strain were
initially uncharacterized. Further investigation into one of these i-
modulons revealed genes encoding translation machinery, such as
ribosomal proteins, to comprise one of the uncharacterized i-
modulons (Fig. 5b). The compendium-wide activity of this
Translation i-modulon was correlated with growth rate (Pearson
R= 0.59, p-value < 10−10, Supplementary Fig. 4g), consistent
with previous observations that growth is propelled by increased
ribosomal catalytic activity52–55. The Translation i-modulon
therefore represented the greedy, growth-related functions of
the transcriptome.

The i-modulon with the largest activity decrease in both
variants was enriched in genes controlled by the stress response
sigma factor (RpoS). The RpoS i-modulon activity was correlated
(Pearson R= 0.65, p-value < 10−10, Supplementary Fig. 4h) with
the expression level of rpoS and revealed a quantitative measure
of cellular stress across diverse conditions (Fig. 5c). Therefore, the
RpoS i-modulon represented the fearful stress-hedging functions
of the transcriptome.

PRECISE also contained expression data for over 45 strains
from ALE experiments47, many of which contained mutations
in genes encoding RNA polymerase subunits. All strains
with mutated rpoB or rpoC genes exhibited low RpoS i-
modulon activities, reflecting a reduction in stress-related
expression. Further examination revealed that the RpoS i-
modulon activity was anti-correlated with the Translation i-
modulon activity (Pearson R=−0.60, p < 10−10), illuminating
the compendium-wide transcriptomic trade-off between fear
and greed (Fig. 5d). The mutations in rpoB shifted the strains
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along this line, increasing growth and reducing stress-related
gene expression.

The results presented in this section show that the fear-greed
tradeoff, and other transcriptome-restructuring events, can be
studied in great detail by decomposing the transcriptome into a
summation of independent regulatory events.

An i-modulon discriminates between two E. coli strains. The
PRECISE compendium includes 46 RNA-seq datasets from E. coli
BW25113, a closely related strain to E. coli MG1655. The
BW25113 strain was the background strain for the Keio collection
of over 3000 single-gene knock-outs56. The transcriptomic dif-
ferences between these strains, resulting from 29 genetic
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variations57, have not been characterized. We identified a single i-
modulon whose activities separated the transcriptomes of the two
strains (Fig. 6a). The i-modulon gene coefficients elucidated nine
transcriptomic differences explained by genetic differences
between the strains (Fig. 6b and Supplementary Table 7).

We then sought to use the summation of i-modulons to
quantitatively account for these strain-specific differences. To this
end, we analyzed two expression profiles in the compendium: the
reference condition (wild-type E. coli MG1655) and E. coli
BW25113 with thiamine and ferric chloride supplementation.
Only two i-modulons were differentially activated between the
two conditions: the BW25113 i-modulon (described above) and
the Thiamine i-modulon that controls thiamine biosynthesis
through a riboswitch34. We accounted for the transcriptomic
differences by subtracting the gene coefficients in the two i-
modulons scaled by their respective i-modulon activities from the
E. coli BW25113 expression profile. This subtraction increased
the R2 between the two strains’ expression profiles from 0.29 to
0.96 for the BW25113 i-modulon genes, and from below 0 to 0.95
for the Thiamine i-modulon genes. (Fig. 6c). A similar increase in
the R2 value for the BW25113 i-modulon genes was observed,
when the i-modulon was subtracted from any BW25113
expression profile. This illustrated that the summation of the
independently modulated genes captured the major expression
differences between the two strains.

In the previous section, we used the i-modulon structure to
interpret the effects of a single mutation in rpoB on the
transcriptome. Here, we illustrated the broader ability of the i-
modulons to interpret and quantitatively account for the
transcriptional differences between closely related strains. Next,
we evaluate if i-modulons can provide understanding of larger
scale genetic differences between strains.

I-modulons explain expression changes across E. coli strains. It
has proven difficult to compare transcriptional regulation
between different strains of the same species58. We examined
the ability of i-modulons to provide a structured basis for
such comparison. We grew and expression profiled a set of
eight diverse E. coli strains in identical media (with additional
supplements for BW251123 as described above) and calculated
their i-modulon activities using the 92 previously identified i-
modulons as a basis (Fig. 6d). Three strains (MG1655,
BW25113 and W3110) diverged from the same ancestral K-
12 strain with limited genetic differences; CFT0173 and O157:
H7 EDL933 are pathogenic strains; and the remaining
three strains (BL21(DE3), HS, and Crooks) are laboratory
strains.

The expression profiles of the K-12 strains shared similar i-
modulon activities, including higher activities in the pyrimidine-

Rpo
S

Unc
ha

ra
cte

riz
ed

Gad
EW

X

Cop
pe

r

Gad
W

X

FlhD
C

Unc
ha

ra
cte

riz
ed

Tra
ns

lat
ion

Znt
R/Z

ur

−20

−10

0

10

I-
m

od
ul

on
 a

ct
iv

ity
ch

an
ge

 fr
om

 W
T

 s
tr

ai
n

RpoB E672K

RpoB E546V

a

RpoB
E672K

Evolved
strain with

RpoB
mutation

Evolved
strain with

RpoC
mutation

Other
evolved
strains

Nitrogen
limitation

Oxidative
stress

Iron/sulfur
starvation

Osmotic
stress

R
po

S
 I-

m
od

ul
on

 a
ct

iv
ity

c

*
Significant
activity change

Pearson R = –0.60

Reference (WT)

RpoB E672K

RpoB E546V

Evolved strain

Unevolved strain

No growth rate
measurement

d

1.5 h–1

0 h–1

1 h–1

0.5 h–1

G
ro

w
th

 r
at

e

b

Stress

Growth

Unc
ha

ra
cte

riz
ed

Unc
ha

ra
cte

riz
ed

NikR

20

Unc
ha

ra
cte

riz
ed

*

* *
*

*
** ** * *

* * * * *
*

*

*
*

N
um

be
r 

of
 g

en
es

30

20

10

0

–10

–20

–30

−40 −20 0 20 40

RpoS I-modulon activity

−30

−20

−10

0

10

20

T
ra

ns
la

tio
n 

I-
m

od
ul

on
 a

ct
iv

ity

Translation i-modulon gene coefficients

n = 50

n = 11n = 15

n = 4

n = 4n = 6n = 8

n = 12

1000

2000

−0.10 −0.05 0.00 0.05 0.10 0.15
0

10

20

30

rpsS
rplV

cyoC
rpsJ
rplC
cyoD
rplP
rplW
rpsQ
rplD
rpsC
rplB

priB
rplI
secY
rplA
rplM
rpsH
rpsE
rplR
rpsR
cysH
rpmC

zraP

Fig. 5 Two i-modulons characterize the ‘Fear vs. Greed’ Tradeoff. a Comparison of i-modulon activities in the RpoB E672K and RpoB E546V mutant strains
grown on glucose minimal media against wild-type activities. Significant i-modulon activities are designated by asterisks (see the “Methods” section). For
detailed information about these i-modulons, see Supplementary Data 2. b Histogram of translation i-modulon gene coefficients. Gene names are shown
for genes above threshold. c The RpoS i-modulon activities revealed the stress level of the cell under various conditions. Boxplot whiskers represent
extrema, box bounds represent upper and lower quartiles, and center-line represents the median value. d The RpoS i-modulon activities were anti-
correlated with the Translation i-modulon activities, highlighting the trade-off between stress-hedging and growth. Single nucleotide mutations in RpoB (in
yellow and orange) shifted cellular resources along this line from the wild-type strain (in red). Points were colored by growth rate measurements when
available.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13483-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5536 | https://doi.org/10.1038/s41467-019-13483-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


responsive PurR-2 i-modulon. This increased expression can be
explained by a defect in the rph-pyrE operon, which leads to
pyrimidine starvation in the K-12 strains59. The RpoS i-modulon
activity was significantly suppressed in all strains except MG1655

and BW25113. Strains W3110, CFT073, and O157:H7 EDL933 have
an amber mutation that results in a truncation in rpoS and is known
to reduce its expression and activity60,61. Three other strains (BL21
(DE3), HS, and Crooks) contain a divergent mutation at the same
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position that likely explains their reduced RpoS i-modulon activity
(Fig. 6e, f).

These results demonstrate that the i-modulons derived from a
single strain can provide a scaffold to analyze transcriptomes
from other strains of the same species. Strain-specific differences
in i-modulon activities can be traced to sequence variations in the
associated regulators, thus providing a deep explanation for
targeted strain differences.

Discussion
We have demonstrated that the combination of (1) ICA of high-
quality RNA-seq data and (2) high-resolution comprehensive
regulator-binding site information, identifies linear combinations
of quantitative regulatory signals that reconstitute the E. coli
transcriptome, leading to the first E. coli TRN inferred from an
RNA-seq compendium. This result suggests that a principle of
i-modulon addition governs the composition of the E. coli tran-
scriptome. Application of this principle provided a multi-
dimensional understanding of the E. coli TRN, and uncovered
detailed responses to environmental and genetic perturbations,
optimality of adaptation to new conditions, and links between
genotypes and phenotypes of E. coli strains. If this principle
governs the composition of other prokaryotic transcriptomes, it
provides a path to develop a detailed understanding of tran-
scriptional regulation in less-understood organisms.

We have shown that for the model prokaryote E. coli, 61 of the
92 identified i-modulons represent the effects of characterized
transcriptional regulators. This coverage is a consequence of the
quality and diversity of the RNA-seq compendium used, the
extensive information available on E. coli transcriptional reg-
ulators, and the relative simplicity of the E. coli TRN. In principle,
if we obtained expression data for every condition sensed by a
prokaryote, we could decompose its expression state to a non-
reducible set of regulatory signals. These fundamental signals,
combined with high-throughput-binding data for all TFs in an
organism42, would lead to the establishment of a comprehensive
quantitative TRN.

Methods
RNA extraction and library preparation. Total RNA was sampled from duplicate
cultures. All strains were grown in minimal salts (M9) medium at exponential
phase, with complete growth conditions listed in Supplementary Data 1. Growth
curve analysis were performed using Bioscreen C Reader system with 200 μL
culture volume per well. Two biological replicates were used in the assay. Media
components were purchased from Sigma-Aldrich (St. Louis, MO). For nitrate
respiration cultures, a 35:50 ratio of carbon dioxide to nitrogen was bubbled
through the media to deoxygenate. After inoculation and growth, 3 mL of cell broth
(OD600 ~ 0.5) was immediately added to two volumes Qiagen RNA-protect Bac-
teria Reagent (6 mL), vortexed for 5 s, incubated at room temperature for 5 min,
and immediately centrifuged for 10 min at 11,000×g. The supernatant was dec-
anted, and the cell pellet was stored in the −80 °C. Cell pellets were thawed and
incubated with Readylyse Lysozyme, SuperaseIn, Protease K, and 20% SDS for
20 min at 37 °C. Total RNA was isolated and purified using the Qiagen RNeasy
Mini Kit columns and following vendor procedures. An on-column DNase-treat-
ment was performed for 30 min at room temperature. RNA was quantified using a
Nano drop and quality assessed by running an RNA-nano chip on a bioanalyzer.
The rRNA was removed using Illumina Ribo-Zero rRNA removal kit for Gram-
negative bacteria. A KAPA stranded RNA-Seq Kit (Kapa Biosystems KK8401) was
used following the manufacturer’s protocol to create sequencing libraries with an
average insert length of around ~300 bp. Libraries were ran on a HiSeq4000
(Illumina). All RNA-seq experiments were performed in biological duplicates from
distinct samples.

ChIP-exo preparation. To activate each TF, cells were grown on relevant media:
M9 minimal medium with 2 g/L glucose and 5 mM methionine for MetJ,
M9 minimal medium with 2 g/L glucose and 0.25 mM taurine for CysB, and
M9 minimal medium with 3.3 g/L pyruvate for YheO. To identify binding maps for
each TF, DNA bound to each TF from formaldehyde cross-linked E. coli cells were
isolated by chromatin immunoprecipitation (ChIP) with 15 μL specific antibodies
that specifically recognize myc tag (9E10, Santa Cruz Biotechnology, Catalog #sc-
40), and Dynabeads Pan Mouse IgG magnetic beads (Invitrogen) followed by

stringent washings. ChIP materials (chromatin-beads) were used to perform on-
bead enzymatic reactions of the ChIP-exo method37,62,63. The sheared DNA of
chromatin-beads was repaired by the NEBNext End Repair Module (New England
Biolabs) followed by the addition of a single dA overhang and ligation of the first
adaptor (5′-phosphorylated) using dA-Tailing Module (New England Biolabs) and
NEBNext Quick Ligation Module (New England Biolabs), respectively. Nick repair
was performed by using PreCR Repair Mix (New England Biolabs). Lambda
exonuclease-treated and RecJf exonuclease-treated chromatin was eluted from the
beads and overnight incubation at 65 °C reversed the protein–DNA cross-link.
RNAs- and Proteins-removed DNA samples were used to perform primer exten-
sion and second adaptor ligation with following modifications. The DNA samples
incubated for primer extension as described previously were treated with dA-
Tailing Module (New England Biolabs) and NEBNext Quick Ligation Module
(New England Biolabs) for second adaptor ligation. Primers are listed in Supple-
mentary Table 8. The DNA sample purified by GeneRead Size Selection Kit
(Qiagen) was enriched by polymerase chain reaction (PCR) using Phusion High-
Fidelity DNA Polymerase (New England Biolabs). The amplified DNA samples
were purified again by GeneRead Size Selection Kit (Qiagen) and quantified using
Qubit dsDNA HS Assay Kit (Life Technologies). Quality of the DNA sample was
checked by running Agilent High Sensitivity DNA Kit using Agilent 2100 Bioa-
nalyzer (Agilent) before sequenced using HiSeq 2500 (Illumina) following the
manufacturer’s instructions. ChIP-exo experiments were performed in biological
duplicates from distinct samples.

ChIP-exo processing. Sequence reads obtained from ChIP-exo experiments were
mapped onto the E. coli reference genome (NC_000913.3) using bowtie (v1.1.2)64

with default options in order to generate SAM output files. MACE program65 was
used to define peak candidates from biological duplicates for each experimental
condition with sequence depth normalization. Then, each peak was assigned to the
nearest operon on either side, using operon definitions from RegulonDB. Only
operons 500 base pairs downstream of peak were considered. Final operons on
forward strand were required to be in front of the peak, and operons on reverse
strand were required to be behind the peak. Genome-scale data were visualized
using MetaScope to manually curate peaks (https://sites.google.com/view/
systemskimlab/software?authuser=0).

Compilation of PRECISE. Raw-sequencing reads were collected from GEO (see
Supplementary Data 1 for accession numbers) or produced using the above pro-
tocol, and mapped to the reference genome (NC_000913.3) using bowtie (v1.1.2)64

with the following options “-X 1000 -n 2 -3 3”. Transcript abundance was quan-
tified using summarizeOverlaps from the R GenomicAlignments package (v1.18.0),
with the following options “mode= “IntersectionStrict”, singleEnd= FALSE,
ignore.strand= FALSE, preprocess.reads= invertStrand”66. To ensure the quality
of the compendium, genes shorter than 100 nucleotides and genes with under 10
fragments per million-mapped reads across all samples were removed before fur-
ther analysis. Transcripts per million (TPM) were calculated by DESeq2 (v1.22.1)67.
The final expression compendium was log-transformed log2(TPM+ 1) before
analysis, referred to as log-TPM. Biological replicates with R2 < 0.9 between log-
TPM were removed to reduce technical noise.

Compilation of the reported E. coli regulatory network. We compiled the global
TRN using all interactions from RegulonDB 10.03 for both transcription factor and
sRNA-binding sites. Binding sites were added from recent ChIP-exo studies31, in
addition to binding sites for Nac and NtrC68 and potential-binding sites for 10
uncharacterized transcription factors42. We also included sigma factor-binding
sites, riboswitch information, and transcriptional attenuation from Ecocyc69. When
reported, mode of effect (i.e. activation or repression) was included. If the effect was
unreported, or multiple effects were reported, effects were designated as unknown.
All genes absent from PRECISE were removed from the final TRN.

Computing robust independent components. We first centered the compendium
using wild-type E. coli MG1655 grown on glucose M9 minimal media as the
reference condition (labeled control__wt_glc__1 and control__wt_glc__2). We
subtracted the mean expression of each gene in these two samples from the
compendium to calculate log2-fold-change (LFC) deviations from the reference.

We used the Scikit-learn70 (v0.19.2) implementation of the FastICA algorithm71

to identify independent components. We executed FastICA 256 times with random
seeds, a convergence tolerance of 10−8, log(cosh(x)) as the contrast function, and
the parallel search algorithm. We set the number of components in each iteration
to the number of components that reconstruct 99% of the variance as calculated by
principal component analysis (200 components).

The resulting source components (S) from each run were clustered using the
Scikit-learn implementation of the DBSCAN algorithm72, with epsilon of 0.1, and
minimum cluster seed size of 128 samples (50% of the number of random restarts).
DBSCAN does not require predetermination of the number of clusters, and does
not require that all points belong to a cluster. The dimensionality of the dataset is
therefore estimated by the number of clusters calculated by DBSCAN. The
components computed by FastICA are standardized by default, with a mean of 0
and an L2-norm of 1. However, identical components from separate runs may have
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opposite signs. Therefore, we used the following distance metric:

dx;y ¼ 1� ρx;y

�
�
�

�
�
� ð1Þ

where ρx,y is the Pearson correlation between components x and y. Each
component in a cluster was then inverted if necessary to ensure that the gene with
the maximum absolute value in the component had a positive weight, creating
sign-consistent clusters. The final independent components were defined as the
centroid of each cluster in S, and the weightings were defined as the centroid of
their corresponding weighting vectors in A.

In order to ensure that the final components were consistent across multiple
runs, we computed the clustered components 100 times, and found that 92
components were identified in every run (dx,y < 0.1 between components), which
were the final robust components used in the analysis.

In order to confirm that the i-modulon structure was generally invariant to the
composition of the expression compendium, we applied ICA to three subsets of
PRECISE. The first subset consisted of data published before January 2018 from
unevolved E. coli (124 profiles), the second subset consisted of all data published
before January 2018 (168 profiles), and the third subset consisted of all data
published before January 2018, plus data created to test the i-modulon structure
(198 profiles). We compared the resulting components using the absolute value of
the pearson correlation coefficient. The resulting network was graphed using the
Graphviz73 python library (v0.9) (Fig. 4b). Correlations below 0.5 were discarded as
insignificant.

Determination of the gene coefficient threshold. Each component in S contains
the contributions of each gene to the statistically independent source of variation.
Most of these values are near zero for a given component. In order to identify the
most significant genes in each component, we modified the method proposed in
Frigyesi et al. 74. For each component, we iteratively removed genes with the largest
absolute value and computed the D’Agostino K2 test statistic for the resulting
distribution. The D’Agostino K2 statistic is a measure of the skew and kurtosis of a
sample distribution75. Once the test statistic dropped below a cutoff, we designated
the removed genes as significant.

To identify this cutoff, we performed a sensitivity analysis on the concordance
between significant genes in each component and known regulons. First, we
isolated the 20 genes from each component with the highest absolute gene
coefficients. We then compared each gene set against all known regulons using the
two-sided Fisher’s exact test (FDR < 10−5). For each component with at least one
significant enrichment, we selected the regulator with the lowest p-value.

Next, we varied the D’Agostino K2 test statistic from 200 through 1000 in
increments of 50, and computed the F1-score (harmonic average between precision
and recall) between each component and its linked regulator. The maximum value
of the average F1-score across the components with linked regulators occurred at a
test statistic of cutoff of 550 (see Supplementary Fig. 5a–c).

Since each set of significant genes represents a set of independently modulated
genes, we henceforth refer to these gene sets as i-modulons. Since independent
components have no canonical direction, we inverted i-modulons (and related
activities) such that the number of positive genes in an i-modulon was always
larger than the number of negative genes.

Associating regulators to i-modulons. We compared the set of significant genes
in each i-modulon to each regulon (defined as the set of genes regulated by any
given regulator) using the two-sided Fisher’s exact test (FDR < 10−5). Additionally,
combined regulon enrichments were calculated to identify joint regulation of i-
modulons (such as NtrC+ RpoN and NagC/TyrR), using both intersection (+)
and union (/) of up to three regulons. Final i-modulon-regulator associations were
determined through manual curation of enriched regulators. Automated char-
acterization of i-modulons for Supplementary Data 2 is described in the Supple-
mentary Methods.

Cumulative explained variance for ICA. Components were initially ordered by
the L2-norm (sum of squares) of for each row in the A matrix for ICA. Cumulative
explained variance was calculated for component K, as described in the EEGLAB
suite:76

CEV Kð Þ ¼ 1� TSS X �PK
k¼0 skak

� �

TSSðXÞ ; ð2Þ

where TSS(Y) is the total sum of squares

TSS Yð Þ ¼
X

i;j

ðy2i;jÞ; ð3Þ

X is the original expression profile, sk is column k in the Smatrix, and ak is row k in
the A matrix.

Comparison of microarray data and PRECISE. We acquired the microarray
compendium from the DREAM5 network inference challenge10. We removed
expression profiles without biological replicates, and removed expression profiles
with an R2 score below 0.9 with its biological replicates. The final microarray

compendium contained 4289 genes and 461 expression profiles. We then randomly
selected ten subsets of this compendium, each containing 154 unique conditions to
mirror the composition of the PRECISE compendium. We included all experi-
mental replicates of these conditions, resulting in 10 datasets ranging between 255
and 289 total expression profiles. ICA was performed as described above for all 10
datasets.

The microarray dataset from a single research group was acquired from NCBI
GEO Series GSE683626. This dataset had similar size to PRECISE (266
experiments) to ensure comparability. Microarray data was processed using the
RMA R package77 (v1.50). ICA was performed as described above for both
datasets. PCA determined that 148 components reconstructed 99% of the variance
in the microarray dataset, and 104 robust independent components were identified.

Sparse-PCA was performed using the elasticnet R package78 (v1.1.1), searching
for the same number of components as with ICA (200 for PRECISE and 148 for
microarray data), and a vector of ones as thresholding parameters.

For the comparison figures, each set of components was randomly split into
three groups for three-fold validation. For each training set, we selected the top 20
genes in each component and assigned the regulon with the lowest p-value from
Fisher’s exact test (FDR < 1e−5). If no regulon contained significant p-values, the
component was discarded. We then performed sensitivity analysis for the test
statistic cutoff using these regulon assignments, searching for the test statistic value
that maximized the F1-score across the training set.

The test statistic trained on the training set was then applied to the testing set to
calculate the final validation i-modulons (i.e. significant genes). To assess the
similarity between these i-modulons and known regulation, we identified the
regulon with the lowest p-value (FDR < 1e−5) for each i-modulon in the test set.
No manual curation was used to generate the comparison figure.

Differential activity analysis. We first computed the distribution of differences in
i-modulon activities between biological replicates, and then fit a log-normal dis-
tribution to each distribution. We confirmed that the difference in activities
between biological replicates followed a log-normal distribution for all i-modulons
using the Kolmogorov–Smirnov test and validating through quantile–quantile plots
(Supplementary Fig. 5d–f).

To test for differential activity of an i-modulon between two different
conditions, we first computed the average activity of the i-modulon between
biological replicates, if available. We then computed the absolute value of the
difference in i-modulon activities between the two conditions. This difference was
compared against the log-normal distribution for the i-modulon to calculate a p-
value. I-modulons were designated as significant if the absolute value of their
activities was >5, and FDR < 0.01.

I-modulon summation. We selected samples control__wt_glc__1 and con-
trol__wt_glc__2 to represent the wild-type cell, and samples omics__bw_glc__1 and
omics__bw_glc__2 to represent the mutated strains to be corrected. The average
activities between replicates were used for the corrections. The corrections were
applied to the BW25113 and Thiamine i-modulons.

The i-modulon decomposition is based on the equation

X ¼ SA; ð4Þ
where

xj ¼ Σsi � ai;j ð5Þ
for a particular expression profile j, where i represents an i-modulon. We aim to
produce the correction ðx02Þ to the expression profile (x2) with respect to a reference
expression profile (x1) for all differentially activated i-modulons i∈ I:

x02 ¼ x2 � Σesi � ðai;2 � ai;1Þ; ð6Þ
where esi is a vector of zeros except for significant gene coefficients in i-modulon i,
and aij is the activity of i-modulon i under condition j.

RNA-seq processing projection for multiple strain comparison. Raw-
sequencing reads and transcriptome abundance were identified similar to as
described in the section above, using the following reference genomes:
NC_000913.3 (MG1655 and BW25113), NC_007779.1 (W3110), NC_010468.1
(Crooks), NC_012971.2 (BL21(DE3)), NC_009800.1 (HS), NZ_CP008957.1 (O157:
H7 EDL933), and NC_004431.1 (CFT073). Genes absent from a particular strain
with respect to the reference strains (MG1655) were removed, leaving 915 core
genes. We calculated the log2(TPM+ 1) values using the same centering to
reference conditions (control__wt_glc__1 and control__wt_glc__2) as
described above.

Thereafter, we calculated the i-modulon activities for the eight new E. coli
expression profiles using the previously identified 92 independent components
(including all gene coefficients for the 915 conserved genes). We projected the eight
new expression profiles (X′) onto the previously computed basis (S):

A0 ¼ pinv Sð Þ � X0 ð7Þ
where A′ represents the i-modulon activities for the eight strains, and pinv is the
pseudo-inverse function. This represents the least-squares approximation of A.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
Code central to the conclusions is described in the methods and available at https://
github.com/SBRG/precise-db. Additional code is available from the corresponding
author upon request.

Data availability
New RNA-seq and ChIP-exo data reported in this paper are deposited in the NCBI Gene
Expression Omnibus with primary accession codes GSE122211, GSE122295, GSE122296,
and GSE122320. The complete PRECISE dataset is available in Supplementary Data 1.
All other relevant data are available from the corresponding author upon request.
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