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a b s t r a c t

Among the unresolved issues in the study of relaxor ferroelectrics is the role of freezing temperature,
across which the dynamics of polarization reversal in relaxor ferroelectrics changes. The presence of this
freezing temperature is best manifested by the appearance of a double polarization hysteresis loop just
above the freezing temperature. Given that the polarization pinching evolving into a double hysteresis
starts well below the freezing temperature, there exists a transient temperature regime between the
nonergodic and the ergodic relaxor states. To clarify the role of the freezing temperature on the pinching,
the polarization reversal near the freezing temperature of relaxor (Pb1-xLax)(Zr1-yTy)1-x/4O3 (PLZT) was
monitored using three in situ electric field methods: electrocaloric effect, neutron diffraction, and
transmission electron microscopy. We demonstrate that the pinching results from a two-step process, 1)
domain detexturization in the ferroelectric state and 2) miniaturization of domains. This observation
explains the recently reported gap between the depolarization temperature Td and the ferroelectric-to-
relaxor transition temperature TF-R in lead-free relaxors. We further show that Td and TF-R, which have
long been considered identical in lead-based relaxors, are not the same. The current study suggests that
the mismatch between Td and TF-R is an inherent feature in both lead-based and lead-free relaxor
ferroelectrics.
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Relaxor ferroelectrics have been studied extensively due to their
use in a versatile applications and also due to their intriguing
physical phenomena that are yet to be clarified [1e3]. Among such
intriguing phenomena is the existence of Vogel-Fulcher tempera-
ture (TVF), commonly referred to as the freezing temperature (Tf)
[4e7]. Below Tf, the longest relaxation time of polar nanoregions
(PNRs) diverges [8]. A relaxor below Tf is called a nonergodic
relaxor, while that above Tf is an ergodic relaxor [9]. Due to the
dynamics of PNRs, a permanent long-range ferroelectric order can
be induced in nonergodic relaxors with the application of an
external electric field. Once this long-range ferroelectric order is
induced, nonergodic relaxors are indistinguishable from normal
ferroelectrics with respect to their functional properties such as
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polarization and strain hysteresis. This electric-field-induced
ferroelectric state in nonergodic relaxors is disturbed when they
are heated up above the ferroelectric-to-relaxor transition tem-
perature (TF-R), where they transform into ergodic relaxors.

It is commonly known that this transition back to an ergodic
relaxor state is accompanied by the appearance of an anomaly in
both the real and the imaginary part of the dielectric permittivity
[10]. Meanwhile, an electric field applied to a nonergodic relaxor
induces a ferroelectric state and hence piezoelectricity. Therefore,
from the piezoelectric point of view, a so-called depolarization
temperature (Td), commonly determined by thermally-stimulated
depolarization current (TSDC) measurement [11,12], is of practical
importance, as it marks the upper temperature limit for piezo-
electric applications. On the other hand, the presence of Td is also
well-reflected in the thermal evolution of polarization hysteresis
loops. As the temperature is increased to near Tf, the polarization
hysteresis loop of nonergodic relaxors starts to be pinched,
resulting in a double-loop polarization hysteresis. The appearance
of double-loop polarization hysteresis is not unique in relaxor
systems since the double-loop polarization hysteresis merely
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requires a macroscopic paraelectric state at zero field [13]. It is
noted that the pinched hysteresis loop near Tf is different from the
double hysteresis loop of defect-induced relaxors [14,15], which
usually de-pinches after successive electrical cycling [16e18]. The
pinched hysteresis of relaxors implies that near Tf, the polarization
reversal takes place in two steps, i.e., the polarization reversal in-
volves a transient macroscopic relaxor state [19]. In principle, the
depoling electric field Ed, where the induced polarization starts to
vanish during unloading electric field (See, for example, Fig. 1 for
the meaning of notations used in the current work) reaches 0 kV/
mm at Td.

So far, in canonical relaxors such as Pb(Mg1/3Nb2/3)O3 (PMN)
[20e22] and (Pb1-xLax)(Zr1-yTy)1-x/4O3 (PLZT) [13,23,24], Tf, Td, and
TF-R have been considered to be the same. However, a number of
recent experimental works on lead-free compositions suggest that
TF-R does not have to be identical with Td [19,25,26]. It implies that
the depolarization and the transition to the ergodic relaxor state of
electrically-induced ferroelectric state are separate processes. In
fact, it was demonstrated in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3
(94BNT-6BT) that the process taking place across Td and then TF-R is
a detexturization of electrically aligned ferroelectric domains, fol-
lowed by the miniaturization of the detexturized ferroelectric do-
mains with a long-range order [13,19,25]. This means that the
thermal energy required for depolarizing the electrically textured
state is smaller than that for disrupting electrically-induced long-
range ferroelectric order. As aforementioned, these stepwise pro-
cesses are absent in normal ferroelectrics [27,28]. Given this, the
polarization reversal near Td should, in fact, occur in three steps: 1)
poled state decays into randomly oriented domains, 2) detextur-
ized ferroelectric state breaks down tomacroscopic relaxor state, 3)
textured ferroelectric state aligned in the opposite direction is
manifested [29]. Here, we demonstrate that the polarization
reversal near Td, indeed, takes place in three steps, using calorim-
etry, neutron diffraction, and transmission electron microscopy.
2. Experimental

Hot-pressed commercially available PLZT8/65/35 (Boston
Applied Technologies, MA, USA) was used for this study. For
Fig. 1. Intersections of linear extrapolation lines of saturated polarization and pinched
polarization curves were used to specify the stepwise polarization reversal process via
a ferroelectric-to-relaxor state. Notation Ed, EF-R, and ER-F denote depoling electric field,
transition electric field from the ferroelectric-to-relaxor state, and relaxor-to-
ferroelectric state, respectively. The zero polarization electric field EZP is used instead
of the coercive field EC where depolarization takes place in typical ferroelectrics.
comparison purpose, a commercial soft PZT (PIC 151, PI Ceramic,
Lederhose, Germany) and self-made 0.94(Bi1/2Na1/2)TiO3-
0.06BaTiO3 (BNT-6BT) [30] were also utilized.

Electrocaloric effects were quantified by a direct measurement
method using a homemade in situ calorimeter which consists of a
vacuum bottle, silicone oil, and a temperature sensor (Pt 100,
Heraeus Sensor Technology GmbH, Germany). The temperature
sensor was directly attached to the sample surface. The triangular
bi-polar electric field was applied at 0.1 Hz by a power supply (20/
20C, Trek, Inc. USA). Polarization hysteresis and switching current
loops were obtained with a piezoelectric evaluation system
(aixPES, AixACCT, Germany).

Neutron diffraction experiments were carried out using the
Wombat powder diffractometer at the Australian Nuclear Science
and Technology Organisations OPAL research reactor. A neutron
wavelength of 2.41 Å was used. A detailed description of the
experimental geometry is available in Ref. [31]. As there may be
some time-dependence to the switching behavior observed in PLZT,
we performed time-resolved investigations using a stroboscopic
technique. We applied a triangular waveform at 0.1 Hz where the
detected neutrons are sampled into time bins associated with the
field at an instantaneous point in time. The data collection com-
bines the sum of many cycles of the waveform. The maximum
applied field was 700 V/mm for the sample at 23 �C (room tem-
perature) and 500 V/mm for the sample at 40 �C (above TF-R).

For in situ electric field transmission electronmicroscopy (TEM),
disk specimens were prepared through standard procedures
including grinding, cutting, dimpling, and ion milling. The dimpled
disks were annealed at 200 �C for 2 h to minimize the stress-
induced effects prior to Ar-ion milling to electron transparency. In
situ TEM experiments were carried out on a specimen that was
crack-free at the edge of the central perforation on a Phillips CM30
microscope operated at 200 kV. Experimental details can be found
in Refs. [32e34].

3. Results and discussion

3.1. Electrocaloric effect

Polarization hysteresis, switching current, and electrocaloric
effect of a commercial PZT (PIC 151, PI Ceramic, Lederhose, Ger-
many) and PLZT ceramics during electrical cycling at room tem-
perature are compared in Fig. 2. For both PIC 151 and PLZT, the
initial increase in the polarization value is due to the formation of a
textured long-range order induced by the application of the
external electric field, accompanied by electrocaloric heating.
During a reverse cycle, PIC 151 reveals typical ferroelectric polari-
zation switching with a single switching current, while two
discrete peaks are noted in the switching current for PLZT. It is
obvious from the temperature change that the first peak, making
the polarization state vanished, is related to the transition of the
electric-field-induced ferroelectric state back to the original relaxor
state [19,35], and the second one stems from the establishment of a
textured long-range order along the reverse direction. It is noted
that the adiabatic cooling comes from the electromechanical work,
devoting to the disruption of the poled state of the electric-field-
induced ferroelectric phase [36e38].

3.2. Neutron diffraction

The structure of as-sintered PLZT is observed to be near cubic
using neutron diffraction without any discerned peak splitting nor
superlattice reflections (Fig. 3), which is typical for relaxor ferro-
electrics [39e43]. As will be shown later, the TEM study confirmed
that at a local scale, the initial state of the material is a



Fig. 2. Polarization hysteresis and switching current compared with the electrocaloric effect of (a) PIC151 and (b) PLZT in an initial unpoled state. Inset figures show the second
cycle.

Fig. 3. Change in structure by electrical poling from the unpoled state at 23 �C and
maximum field of 2 kV/mm.
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rhombohedral R3m. It is reasonable to assume that the correlation
length of the initially existing oxygen octahedral tilts manifested by
superlattice reflections is below the detection limit of the currently
utilized neutron diffraction technique; albeit, detectable through a
selected area electron diffraction (SAED) as will be presented later.

The application of electric fields at room temperature leads to
the development of a significant lattice strain and the appearance
of ½(311) and ½(331) superlattice reflections when the scattering
vector is aligned along the electric field direction. The appearance
of superlattice reflections is most likely associated with an anti-
phase oxygen octahedral tilting (a-a-a-). As presented in Fig. 4,
the observed change in the diffraction pattern, e.g., an increase in
the intensity of (210) with the appearance of ½(ooo) type super-
lattice reflections is best-explained, when the initial and the
electric-field-induced phase are a macroscopically rhombohedral
R3m and R3c, respectively. Note that this does not necessarily mean
that the entire material underwent this phase transformation. All
grains within the polycrystal are aligned at different orientations to
the electric field, and thus can be in different states under the field.
The induced superlattice reflections along the field direction do not
vanish after the removal of electric field, demonstrating that the
electric-field-induced structural changes in this PLZT sample are
irreversible at room temperature.

The (210) intensity as a function of applied electric field at 23 �C
(room temperature) and 40 �C (above TF-R) are presented in Fig. 5
(a) and (b) respectively. The (210) intensity at 23 �C features the
typical ferroelectric strain curve. At 40 �C, the shape changes to a
sprout-shaped strain curve with little remnant strain in the lattice,
which is commonly observed in ergodic relaxors. It is noticed that
there exists a strong correlation between the intensity of ½(311)
and (210) reflections and the strain behavior. The intensity of both
reflections starts to decrease near Ed and becomes the minimum
near EF-R.
3.3. Transmission electron microscopy

Using an in situ TEM technique, the electric-field-induced phase
transitions are directly imaged and displayed in Fig. 6 on a repre-
sentative grain along its<112>-zone axis. It is noted that the central
perforation in the TEM specimen distorts the electric field [33,34].
As depicted in Fig. 6 (a), at virgin state, it consists of typical polar
nanodomains. The corresponding SAED pattern [Fig. 6 (b)] reveals
the presence of very weak ½{ooo} superlattice diffraction spots (o
stands for odd Miller indices), which supports our designation of



Table 1
Fullprof simulation parameter for R3m and R3c.

x y z Occ.

R3m Pb 0 0 0 0.5
La 0 0 0 0.5
Zr 0 0 0.5 0.5
Ti 0 0 0.5 0.5
O 0.16667 0.33333 0.33333 2.4

R3c Pb 0 0 0.25 0.5
La 0 0 0.25 0.5
Zr 0 0 0 0.5
Ti 0 0 0 0.5
O 0.12 0.78667 0.08333 2.4

l (Å) a (Å) b (Å) c (Å) a (o) b (o) g (o)

R3m 2.41 5.77473 5.77473 7.08165 90 90 120
R3c 2.41 5.77473 5.77473 14.15724 90 90 120

Fig. 4. Comparison of the neutron diffraction pattern simulation between R3m and R3c
(Parameters used in the simulation are presented in Table 1).
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R3c instead of R3m to as-sintered PLZT. Close-up examination of the
portion of the SAED pattern for the fundamental diffraction (222)
and the superlattice diffraction spot½(333) is displayed in Fig. 6 (c).
The (222) spot features a circular shape, while the ½(333) super-
lattice spot is weak and diffuse.

Electric fields with increasingmagnitudewere applied along the
direction indicated by the bright arrow in Fig. 6 (d). At a field cor-
responding to point ‘d’ in Fig. 6 (m), the nanodomains begin to
coalesce and cluster in the upper right region of the grain, and
transform into long and thin domains on the left as well as lower
Fig. 5. The ½(311) and (210) peak intensity, and polarization hysteresis of
part of the grain [Fig. 6 (d)]. Compared with the crystallographic
orientations revealed in the SAED in Fig. 6 (b), these domains are
likely to have their walls on the (110) plane. With further increased
electric field up to the field corresponding to point ‘e’ in Fig. 6 (m)
[Fig. 6 (e)], the long and thin domains become broader and wedge-
shaped, occupying most part of the grain. The domainwalls remain
roughly along the same (110) plane. Fig. 6 (a), 6 (d), and 6 (e) reveal
the electric-field-induced relaxor-to-ferroelectric phase transition
process in PLZT8/65/35 at room temperature. The coalescence of
nanodomains and the formation of (110) wedge-shaped ferro-
electric domains during the phase transition is consistent with our
previous study on a Pb(Mg1/3Nb2/3)O3-based relaxor composition
[44,45]. Formation of large wedge-shaped ferroelectric domains is
accompanied by a significant intensification of the ½{ooo} super-
lattice reflection spots [Fig. 6 (f)], which is highlighted in Fig. 6 (g)
where the same (222) and ½(333) spots are provided again. Note
that the (222) fundamental diffraction spot is evidently distorted
along the direction that is normal to the (110) domain walls,
appearing as two split spots. The bright-field image of the grain
after the applied field was removed for 1 h is presented in Fig. 6 (h).
The preservation of the large ferroelectric domains confirms that
the induced ferroelectric phase is sustained in the absence of an
applied electric field and the relaxor-to-ferroelectric phase transi-
tion in PLZT8/65/35 is irreversible at room temperature.
PLZT at (b) 23 �C and (c) 40 �C as a function of applied electric field.



Fig. 6. In situ TEM direct observation on the electric-field-induced relaxor-to-ferroelectric and the ferroelectric-to-relaxor phase transitions from a grain along the <112>-zone axis
in PLZT8/65/35. (a) The polar nanodomains at virgin state, (b) the SAED pattern at virgin state, (c) the magnified view of the (222) fundamental spot and the ½(333) superlattice spot
at virgin state. (d) Under the field corresponds to point ‘d’ in (m); (e), (f), and (g) under the field ‘e’; (h) the applied field returns to 0 kV/mm; (i) under the field ‘i’ (close to EF-R); (j),
(k), and (l) under the field ‘j’ (close to EZP). (m) a schematic paragraph of the applied fields. The SAED in (f) and (k) are the same portion of the diffraction pattern shown in (b), while
(g) and (l) show the same spots as in (c).
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The in situ TEM experiment directly reveals that the polarization
reversal takes place through a ferroelectric-to-relaxor phase tran-
sition. As displayed in Fig. 6 (i), when the field in the reverse polarity
close to EF-R is applied, the large ferroelectric domains are disrupted
into thin and short domains clustering in the same direction. In
addition, nanodomains clustering along a different direction are also
formed. At a field in the reverse direction corresponding to EZP,
almost the entire grain is occupiedwith relaxor nanodomains [Fig. 6
(j)]. At the same time, the SAED pattern similar to that formed at
virgin state is seen with circularly shaped fundamental spots and
extremely weak superlattice spots [Fig. 6 (k) and (l)]. Further in-
crease in the field magnitude in the reverse direction was observed
to transform these nanodomains into large ferroelectric domains
again, completing the polarization reversal process.

3.4. Field dependence of Td and TF-R

The correlation between Td-TF-R and Ed-EF-R for (a) PLZT and (b)
BNT-6BT is outlined in Fig. 7. It is reasonable to assume that Td and
TF-R should be defined at the point where Ed and EF-R (Fig.1) become
zero, respectively. The former and the latter coincide with the
temperature, where the detexturization of ferroelectric domains
(Td/Ed) and the miniaturization of detexurized ferroelectric do-
mains (TF-R/EF-R) take place, respectively. In this sense, we notice
that Td is located at the temperature near the onset point of
thermally-stimulated depolarization instead of the inflection point,
i.e., the peak of TSDC. The dielectric anomaly, which has commonly
been taken as TF-R, takes place slightly below the actual TF-R.

4. Conclusions

A stepwise polarization reversal process via a ferroelectric to a
relaxor state was observed in a nonergodic relaxor PLZT using in
situ monitoring methods, namely, electrocalorimetry, neutron
diffraction, and TEM measurements. A room-temperature electro-
caloric analysis on the ceramic revealed that in addition to
commonly expected electrocaloric heating peaks correlated with
the development or reversal of domain texture, there existed an



Fig. 7. Changes in the remanent polarization and the dielectric permittivity of electric-
field-induced ferroelectric phase in (a) PLZT and (b) 94BNT-6BT with increasing tem-
perature in comparison with Td and TF-R extracted from temperature-dependent po-
larization hysteresis loops (bottom). Error bars were determined by the standard error
of intercept of the linear polynomial fit.
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extra cooling peak in-between two heating ones. In situ neutron
diffraction study revealed that the extra cooling peak correlated
with the vanishing of the electric-field-induced ½(ooo) superlattice
reflections, which implies that there exists an intermediate process
breaking down the electric-field-induced long-range order during
polarization reversal. In situ TEM study further demonstrated that
the initial unpoled state consisted of polar nanodomains, which
coalesced into well-developed ferroelectric domains by the appli-
cation of electric field; under reverse fields, the electric-field-
induced ferroelectric domains were disrupted into polar nano-
domains similar to those in the initial state. The current study
suggests that Td and TF-R do not have to be identical. A comparative
study of both temperature-dependent and electrically-induced
phase transitions verified that the deviation between Td and TF-R
is quantified by the gap between the depoling electric field (Ed) and
a phase transition electric field (EF-R).
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