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Abstract: Displacement measurements are useful information for various engineering 

applications such as structural health monitoring (SHM), earthquake engineering and 

system identification. Most existing displacement measurement methods are costly,  

labor-intensive, and have difficulties particularly when applying to full-scale civil 

structures because the methods require stationary reference points. Indirect estimation 

methods converting acceleration to displacement can be a good alternative as acceleration 

transducers are generally cost-effective, easy to install, and have low noise. However, the 

application of acceleration-based methods to full-scale civil structures such as long span 

bridges is challenging due to the need to install cables to connect the sensors to a base 

station. This article proposes a low-cost wireless displacement measurement system using 

acceleration. Developed with smart sensors that are low-cost, wireless, and capable of  

on-board computation, the wireless displacement measurement system has significant 

potential to impact many applications that need displacement information at multiple 

locations of a structure. The system implements an FIR-filter type displacement estimation 

algorithm that can remove low frequency drifts typically caused by numerical integration 

of discrete acceleration signals. To verify the accuracy and feasibility of the proposed 

system, laboratory tests are carried out using a shaking table and on a three storey shear 

building model, experimentally confirming the effectiveness of the proposed system. 
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1. Introduction 

Displacement measurements provide useful information for various engineering applications such 

as structural health monitoring (SHM), earthquake engineering, and system identification. 

Displacement responses from a structure can be obtained either by: (1) contact or (2) non-contact type 

sensors (see Table 1). The linear variable differential transformer (LVDT), one of the most commonly 

used contact type devices, requires a connection link between the structure and the fixed reference 

point; applications to large civil structures such as bridge deflection measurements are quite 

challenging due to the difficulties in sensor installation. GPS can be an attractive alternative as 

displacement can be conveniently measured, but the use of GPS is limited to long-period, large 

deflection structures such as high-rise structures and long-span bridges due to its relatively low 

sampling rate and accuracy [1–3]. 

Table 1. Displacement measurement methods. 

Type Method Reference Resolution 

Contact type 

LVDT Reference-based ~1 μm [4] 

GPS [1–3] 
Reference-free  

Reference-based 

~10 m [3]  

10~20 mm [5] 

Indirect estimation [6–11]  

(acceleration, velocity, strain) 
Reference-free Device dependent 1) 

Non-contact type 

LDV [12,13] Reference-based 2) ~1 μm [14] 

Total Station [15] Reference-based ~1 mm at 200 m [15] 

Vision-based System [16–18] Reference-based ~0.15 mm at 70 m [18] 
1) The resolution for each method is dependent on the performance of data acquisition devices. 2) The device 

location is considered to be a reference point because the measurement point is relative to it. 

Non-contact type methods that can remotely measure displacement include laser Doppler 

vibrometers (LDVs) [12,13], total station [15], and vision-based systems [16–18]. While displacement 

is conveniently measured, the non-contact type approaches can have accuracy issues due to the 

mounting condition of the devices. In particular, large civil structures such as long-span bridges are 

typically constructed over seas, rivers, or roads where the sensor installation is difficult; finding 

appropriate mounting positions is challenging.  

The difficulties found in the contact and non-contact type approaches can be resolved by 

introducing reference-free, indirect estimation approaches for displacement acquisition. Measurements 

such as acceleration [7,8], velocity, and strain [6,9–11] are typically employed as they can be obtained 

without reference points. In particular, accelerometers are commonly used in dynamic testing of 

structures due to their installation convenience and relatively low cost and noise; the indirect 

estimation using acceleration responses has great potential to be widely adopted for obtaining 

displacement information of structures.  
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The displacement estimation using acceleration measurements is based on the fact that the double 

integration of acceleration is equal to displacement. However, the numerical integration requires the 

initial conditions of the displacement to be determined, which are generally unavailable. In addition, 

the double integration involves intrinsic errors due to measurement noise and imperfect information in 

measured discrete acceleration signals, typically resulting in the low frequency drift in the estimated 

displacement. Thus, minimizing the errors caused by the numerical double integration is the most 

important challenge for any acceleration-based approach [19].  

Park et al. [8] suggested initial velocity estimation methods for directly integrating acceleration to 

determine displacement. The method is independent of initial conditions and performs integration by 

dividing acceleration data into several segments to improve accuracy. However, as the size of the 

segments is empirically determined, implementing the automated calculation on a smart sensor is 

difficult. In addition, a large number of trial-and-error iterations need to be performed to find the initial 

conditions. Thus, this approach is considered inappropriate for smart sensor applications while 

accurately calculating displacement. Kandula et al. [20] proposed a signal model for acceleration as a 

sum of exponentially damped sinusoidal signals. The noise-free acceleration can be modeled and then 

twice integrated to obtain a displacement response. However, this approach involves a matrix inverse 

of relatively large datasets, which can cause long calculation times and possible instability in the smart 

sensor. Also, the acceleration data is processed in separate blocks for non-stationary processes without 

a consistent guideline, which hinders automated processing. Lee et al. [7] developed a dynamic 

displacement estimation method using acceleration to remove the drift error by filtering out low 

frequency components. Defined as a boundary value problem, this approach only requires prior 

information regarding the lowest frequency, while the initial condition of displacement is unnecessary. 

While limited to zero-mean displacements, this approach is seen to be promising because it is 

computationally efficient, cost-effective, reference-free, and accurate for zero-mean displacements. 

However, accelerometers need complex wiring from the desired measurement place to a central base 

station, in which measured signals can be contaminated by electric noise.  

The applicability of the acceleration-based displacement estimation can be greatly enhanced by 

integrating with smart sensors to provide full displacement information about large civil structures. 

Smart sensors have been recognized as a new paradigm in civil infrastructure monitoring, being 

expected to overcome limitations that have hindered widespread adoption of traditional wired 

monitoring systems [21]. Key features of the smart sensor are intelligent on-board computing, wireless 

communication, cost effectiveness, and sensing capability [22], which enable dense networks of 

sensors essential for reliable and accurate assessment of structural health in full-scale structures. With 

the acceleration-based approaches embedded on smart sensors, a network of smart sensors can utilize 

the computing power to perform distributed in-network data processing, converting measured 

acceleration signals to displacement at every sensor location. Thus, detailed displacement information 

of a structure can be obtained from densely deployed smart sensors.  

This paper presents a wireless displacement measurement system based on acceleration responses. 

The proposed system is designed to perform the distributed in-network data processing to transform 

measured accelerations to dynamic displacements at each sensor location. Due to limited resources 

available in the smart sensor such as the battery power and the computational capability, the embedded 

processing for displacement estimation is optimized to minimize the power consumption during the 
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computation while maximizing the stability of the system. The validity of the proposed system is 

experimentally demonstrated on a shaking table test with various frequency responses and on a three 

storey shear building model subjected to a random excitation. 

2. Displacement Estimation Using Acceleration 

A wide variety of engineering applications employ acceleration to identify desired information 

because acceleration sensors are generally cost-effective, convenient to install, and have relatively low 

noise. Compared to the displacement sensors that require fixed reference points, the installation 

convenience of the accelerometer sensors has great advantages in civil engineering applications in 

which the reference points are often unavailable. Thus, acceleration is considered to be appropriate for 

indirectly obtaining displacement responses of civil engineering structures. 

We investigated acceleration-based displacement estimation algorithms based on the following 

criteria for possible use with the smart sensor: 

 Low frequency errors can be removed. 

 Initial conditions are not required in the calculation. 

 Automated calculation. 

 Computational efficiency. 

Knowing that the smart sensors have limited resources and should be operated autonomously, the 

criteria of the computational efficiency and the automated calculation are included. As previously 

reviewed, the approach proposed by Lee et al. [7] is seen to be suitable for the wireless displacement 

estimation system, satisfying the criteria with distinguished computational efficiency and stability.  

For completeness, the displacement estimation approach is briefly described. Consider the following 

optimization problem to determine displacement from measured acceleration: 

2

2

22

2

2

2
))((

2

1
Min uauLL

u


 tca  (1) 

where u , t , and a  are the estimated displacement, sampling time, and measured acceleration, 

respectively. aL  is the integration operator of the discretized trapezoidal rule, cL  is the second-order 

differential operator, ||·||2 denotes 2-norm of a vector, and   represents the optimal regularization 

factor that adjust the contribution of the second term in the minimization problem. The optimal 

solution to this problem is the displacement that is close to the numerical double integration of the 

measured acceleration by the first term in Equation (1), while the magnitude is kept from becoming 

large due to the drift problem by having the second term. The solution to Equation (1) can be  

written as:  

2 1 2 2( λ ) ( ) ( )T T

a t t    u L L I L L a Ca  (2) 

where c aL L L  and the superscript T denotes the matrix transpose. Note that this approach assumes 

the displacement is a zero-mean process.  

Because boundary conditions at the beginning and end of the displacement in the time domain are 

unknown, the displacement calculated using Equation (2) has significant errors near the boundaries. 

This problem can be resolved by using an overlapping moving window approach, which is based on 
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the fact that the displacement estimation is accurate at the center, while the error increases near the 

boundaries. The moving windows are selected as shown in Figure 1, each of which is used to calculate 

the displacement using Equation (2). The displacement values at the center of each window are 

collected to obtain the full displacement time history. This process is equivalent to applying an FIR 

filter of C t
2
 to the measured acceleration a . In addition, the optimal regularization factor can be 

determined as: 

1.9546.81optimal dN  .  

Figure 1. Displacement reconstruction scheme using overlapping time windows.  

 

3. Wireless Displacement Measurement System 

Combined with the displacement estimation algorithm, the smart sensor enables the wireless 

displacement measurement system with enhanced applicability to full-scale civil structures. The 

wireless communication associated with the smart sensor network removes the cabling between 

sensors and the central data repository that needs significant effort and cost as in the wired sensor 

systems, and thus allows a dense network of sensors to be deployed in large structures. Each sensor 

node in the network can conduct sensing and distributed computing to convert measured acceleration 

to displacement, providing full structural displacement information. 

The proposed wireless displacement measurement system is based on the combination of the smart 

sensors and the displacement estimation algorithm to provide a practical means of acquiring the 

detailed displacement profile of full-scale civil structures. The system consists of: (1) hardware layer 

including a base station, a gateway node and smart sensor nodes, and (2) software layer embedded in 

each sensor node for data acquisition, displacement estimation, and network operation (see Figure 2). 

The base station is to interface with the network, the gateway node controls the network, and the 

sensor node is for sensing, computation, and communication. With the sensor hardware deployed on a 

structure, the smart sensor network measures acceleration responses and produces dynamic 

displacement through the software layer. As each sensor node uses its own measured acceleration for 

the calculation, the software layer that implements the displacement estimation employs the distributed 
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independent processing scheme in which each sensor node process measured data without information 

sharing with neighbor nodes [23]. 

Figure 2. Schematic view of the wireless displacement measurement system. 

 

The proposed system inherits all features and limitations of the smart sensor and the displacement 

estimation algorithm on which the system is based. For example, operational capabilities such as 

wireless communication range, computation time, and maximum data length depend on mostly smart 

sensor platforms. In addition, the proposed system is limited to zero-mean displacements as the 

selected FIR-filter type displacement estimation algorithm is.  

To realize a reliable wireless displacement measurement system, both hardware and software layers 

of the system are carefully considered with: (1) the selected sensor hardware that consists of 

MEMSIC’s Imote2 smart sensor platform and ISM400 sensor board and (2) the implementation of the 

displacement estimation approach based on the distributed independent processing.  

3.1. Imote2 Smart Sensor Platform 

For the hardware layer of the wireless displacement measurement system, MEMSIC’s Imote2 

sensor platform shown in Figure 3 is selected due to its reliability, powerful computing capability, and 

sufficient memory spaces. Imote2 is a high-performance wireless, computing module with Intel’s 

PXA271 XScale
®

 processor running at 13–416 MHz with memory spaces of 256 kB SRAM, 32 MB 

FLASH, and 32 MB SDRAM. The powerful processor and large memory spaces enable long-term 

measurement as well as on-board processing of large data. Imote2 uses 2.4 GHz wireless communication 

with either the on-board or external antenna.  
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Figure 3. Hardware components of smart sensor node: (a) Imote2; (b) ISM400 sensor board. 

 
 

(a) (b) 

As shown in Figure 3, the Imote2 interfaces with sensor boards that can measure data such as 

acceleration, strain, temperature, humidity, and light, depending on the attached sensor boards. As 

acceleration is required in this study, MEMSIC’s ISM400 sensor board also known as SHM-A 

developed at the University of Illinois at Urbana-Champaign [24] is used. The ISM400 sensor board 

features a 3-axis accelerometer (ST Microelectronic’s LIS344ALH as in Table 2 and an embedded 

Quickfilter QF4A512 that has a 4-channel, 16-bit analog to digital converter (ADC) and a signal 

conditioner with user-selectable sampling rates and programmable digital filters. The ISM400 sensor 

board also has temperature, humidity, and light sensors. 

Table 2. LIS344ALH accelerometer specification [24]. 

Parameter Value 

Axes 3 

Measurement range ±2 g 

Noise density 50 µg/√Hz 

Resolution 0.66 V/g 

Power supply 2.4 V to 3.6 V 

Temperature range −40 to 85 °C 

Supply current 0.85 mA 

3.2. Implementation of the Displacement Estimation Algorithm on Imote2 

The displacement estimation on the Imote2-based sensor network is implemented using the Illinois 

SHM Project (ISHMP) Services Toolsuite. SHM applications running on smart sensors require 

complex programming for essential components such as network-wide synchronized sensing, reliable 

wireless communication, networking between nodes, and algorithm implementations; developing a 

smart sensor application from scratch is challenging and time consuming. The ISHMP Service 

Toolsuite provides open-source middleware services implementing these components that can be used 

as building blocks to develop a new smart sensor application, significantly reducing time and effort in 

programming. More detailed information regarding the ISHMP Services Toolsuite can be found in 

Rice et al. [25]. 
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The application, Independent processing-based Displacement Estimation using Acceleration 

(IDEA), is developed to estimate dynamic displacement from measured acceleration data based on the 

distributed independent processing. The implementation of IDEA combines the displacement 

estimation algorithm with essential services such as network-wide sensing and wireless communication 

provided by the ISHMP Services Toolsuite. The services used to develop IDEA include: 

 Time Synchronization to synchronize local clocks in each sensor node. 

 Unified Sensing for measuring acceleration. 

 SensingUnit to perform network-wide sensing utilizing Time Synchronization and Unified 

Sensing services. 

 ReliableComm for reliable wireless communication. 

 RemoteCommand for gateway and sensor nodes to interact with each other in a way that 

command messages are conveyed to sensor nodes that perform designated tasks such as 

sensing, computing, and sending data. 

Note that the italicized denotes service names in the ISHMP Services Toolsuite. Due to these 

services, SHM applications for smart sensors can be more systematically and reliably developed. IDEA 

is developed by implementing the displacement estimation algorithm organized with the services as 

shown in the flowchart in Figure 4. Note that the lowest frequency of interest should be determined 

once by measuring acceleration before running IDEA. The network operation of the gateway and 

sensor nodes are shown on the left and right side of the Figure 4, respectively. When the sensor nodes 

finish sensing, the gateway node delivers parameters (i.e., target frequency of the structure, sampling 

rate, and window size) that are required for calculating displacement. After the parameters are 

transferred to the sensor nodes, matrix C in Equation (2) is calculated; only the middle row of C is 

stored and used in the calculation of Equation (2) because the middle point of each moving window is 

selected as the corresponding displacement value as illustrated in Figure 1. This process is to reduce 

redundant use of memory spaces and computational power by a factor of the size of the time window, 

which is otherwise more than Imote2 can handle. Each moving window of the measured acceleration 

signal produces a point estimate of displacement, which is stored in the memory space of Imote2 as 

illustrated in the bottom of Figure 4.  

When the displacement estimation process is finished, the gateway node can wirelessly receive the 

estimated displacement from each sensor node if the displacement is requested to the base station by 

users. Received from all sensor nodes, the estimated displacement in the gateway node is transferred to 

the base station. Note that the estimated displacements are collected at the base station for the 

verification purpose, which requires as many data packets as the centralized approach wirelessly 

transfers. IDEA can retain the displacements at each sensor node for further analysis to assess 

structural health, reducing the operation time and power consumption associated with the  

wireless communication.  
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Figure 4. Flowchart of IDEA. 

 

4. Experimental Validation 

To verify the performance of the implementation, two types of experiments are carried out: 

displacement estimation of (1) harmonic motions and (2) a three degrees-of-freedom structure under a 

random excitation.  

4.1. Harmonic Motion Testing  

The Imote2 sensor node is used to estimate displacement of a shaking table in harmonic motion. 

Two Imote2 sensor nodes and one laser displacement sensor are prepared on the shaking table  

(see Figure 5). The Imote2 sensor node on the left side in Figure 5(b) is for displacement estimation 

while the other Imote2 sensor node is for data acquisition from the laser displacement sensor through 
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the external input channel on the ISM400 sensor board. Two Imote2 sensor nodes collect synchronized 

data so that the estimated displacements can be readily compared. Amplitudes of the harmonic motions 

are 2 mm, 4 mm, and 6 mm, each of which has four different frequencies of 0.5 Hz, 1 Hz, 1.5 Hz and  

2 Hz. The size of the time window shown in Figure 1 is determined to be 2.68 times of the target 

periods (i.e., inverse of the driving frequencies) as recommend by Lee et al. [7]. 

Figure 5. Experimental setup for harmonic motion testing: (a) overview of the validation 

test; (b) details of sensor arrangement. 

  

(a) (b) 

The experiment is conducted five times for each testing case to obtain displacement data from the 

Imote2 and laser sensors. Time histories of the estimated displacements are shown in Figures 6–8 for 

the amplitudes of 2 mm, 4 mm, and 6 mm, respectively; the estimated displacements are in good 

agreement with the reference. A difference measure in Equation (3) is introduced to quantitatively 

evaluate the estimation: 

  2

2

,
est ref

est ref

ref

u u
d u u

u


  (3) 

where ||•||2 is a vector norm, and uest and uref are the displacement time history data from the Imote2 

and the laser sensor, respectively. The difference measure calculated for each case is shown in Table 3, 

ranging from 0.025 to 0.114. The difference is observed to decrease as the amplitude and frequency of 

the harmonic motion increase due to the intrinsic low frequency noise in the accelerometer of Imote2. 

As the overall difference levels shown in Table 3 can be considered reasonably small, the Imote2-based 

approach is shown to reliably produce the displacement of the harmonic motions.  

Table 3. Results of the validation test.  

Test Frequency (Hz) 
Error (%) 

2 mm 4 mm 6 mm 

0.5 11.4 6.7 4.1 

1 5.6 4.6 2.5 

1.5 4.5 3.6 2.3 

2 3.4 2.7 2.5 
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Figure 6. Excitation amplitudes of 2 mm: (a) 0.5 Hz excitation; (b) 1 Hz excitation;  

(c) 1.5 Hz excitation; (d) 2 Hz excitation.  

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 7. Excitation amplitudes of 4 mm: (a) 0.5 Hz excitation; (b) 1 Hz excitation;  

(c) 1.5 Hz excitation; (d) 2 Hz excitation.  
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Figure 8. Excitation amplitudes of 6 mm: (a) 0.5 Hz excitation; (b) 1 Hz excitation;  

(c) 1.5 Hz excitation; (d) 2 Hz excitation. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

4.2. Shear-Building Model Test 

The wireless displacement measurement system is further validated using the 3-DOF shear building 

model on the shaking table as shown in Figure 9. The properties of the test structure are shown in 

Table 4. An Imote2 sensor node is installed on the top of the structure to estimate displacement at the 

location; a laser displacement sensor is also used to provide reference data (see Figure 9). The structure 

is excited with a random ground vibration having the amplitude of 0.1 mm and the bandwidth  

of 0–10 Hz. 

Figure 9. Experimental setup for shear building testing. 
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Table 4. Structural parameters of the model. 

Parameters Value 

Mass 16.09 kg 

Mass density 7850 kg/m3 

Poisson’s ratio 0.28 

Elasticity modulus 200 GPa 

Bending stiffness 20 Nm2 

Length of each floor 34.3 cm 

Prior to the experiment, the acceleration data is collected to determine the size of the time window 

(see Figure 1). With the power spectrum of the measured acceleration, three natural frequencies of the 

structure are identified as 1.98 Hz, 5.35 Hz, and 8.11 Hz. Thus, the size of the time window is selected 

to be 2.68/1.98 Hz ≈ 1.35 s as calculated in the harmonic motion testing.  

Figure 10. Comparison of the estimated and reference displacements: (a) time history;  

(b) power spectrum. 
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Table 5. Accuracy comparison between the harmonic motion and shear building tests. 

Testing Frequency (Hz) Amplitude (mm) Difference Measure 

Harmonic Motion (from Table 3) 2 2 3.4% 

Shear Building 
1.98  

(lowest frequency) 

1.96  

(standard deviation) 
6.2% 

Displacement estimation using the Imote2 is performed with the sampling rate of 25 Hz, obtaining 

2,500 data points. Figure 10 compares the estimated and reference displacements both in time and 

frequency domains, showing that the accurate estimation of the displacement by Imote2. To evaluate 

the accuracy in the time domain, the difference measure in Equation (3) is calculated to be 0.062. 
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Considering the lowest frequency and standard deviation of the estimated displacement are 1.98 Hz 

and 1.9637 mm, respectively, the difference measure of 0.062 is greater than 0.034 when the frequency 

is 2 Hz and the amplitude is 2 mm in Table 3 as summarized in Table 5. The larger difference in the 

shear building test is due to the nature of the displacement estimation method employed in this study: 

the FIR filtering assumes the zero-mean process and thus frequency components lower than the target 

frequency (i.e., 1.98 Hz in this test) may not fully contribute in the displacement estimation. As a 

result, the power spectrum of the estimated displacement has errors in the low frequency region as 

shown in Figure 10(a). Note that the effect of this low frequency error is small in the harmonic motion 

tests as most energy is concentrated on the driving frequency. Based on the observation both in the 

frequency and time domains, the Imote2-based WSSN can be considered to produce reasonably 

accurate displacement estimation.  

5. Conclusions  

This study proposes a low-cost wireless displacement measurement system based on acceleration 

responses, designed to acquire detailed displacement information about civil engineering structures. 

Among displacement estimation schemes using acceleration responses, the FIR filter-based method 

was selected due to its computational efficiency and stability. The displacement estimation algorithm 

was embedded on the Imote2 smart sensor platform with the middleware services of time synchronization, 

network-wide sensing, and reliable data communication, provided by the ISHMP Services Toolsuite. 

The Imote2-based displacement measurement system performs embedded data processing to estimate 

displacements at each sensor location using measured acceleration data. The validity of the proposed 

method was experimentally demonstrated in two laboratory-scale experiments. Harmonic motion 

testing was successfully carried out with the various frequencies and amplitudes, resulting in the 

accurate displacement estimation. To further validate the performance of the Imote2-based displacement 

measurement system for use in a structure with multiple natural frequencies, the random vibration test 

was conducted on the three-storey shear building model. The estimated displacement showed good 

agreement with the reference displacements measured from the laser displacement sensor. The series 

of displacement estimation tests described in this study showed substantial potential for the proposed 

approach to be used to provide detailed displacement information in large civil structures.  
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