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Abstract
More than 300 million people worldwide experience depression; annually, ~800,000 people die by suicide.
Unfortunately, conventional interview-based diagnosis is insufficient to accurately predict a psychiatric status. We
developed machine learning models to predict depression and suicide risk using blood methylome and transcriptome
data from 56 suicide attempters (SAs), 39 patients with major depressive disorder (MDD), and 87 healthy controls. Our
random forest classifiers showed accuracies of 92.6% in distinguishing SAs from MDD patients, 87.3% in distinguishing
MDD patients from controls, and 86.7% in distinguishing SAs from controls. We also developed regression models for
predicting psychiatric scales with R2 values of 0.961 and 0.943 for Hamilton Rating Scale for Depression–17 and Scale
for Suicide Ideation, respectively. Multi-omics data were used to construct psychiatric status prediction models for
improved mental health treatment.

Introduction
Suicide and depression are major health hazards,

resulting in the death of one person every 40 s globally1,2.
They are complex and intertwined phenomena: ~4% of
individuals diagnosed with depression commit suicide,
and more than half of the persons who attempt suicide
meet the criteria of depression3. The suicide rate in South
Korea (25.8 deaths per 100,000 persons) is among the
highest worldwide and is 2.30 times higher than the
average of the Organization for Economic Co-operation
and Development (OECD) countries (11.2 deaths per
100,000 persons). South Korea has been ranked second

among the OECD countries in terms of suicide rates.
Notably, the suicide rate for women in South Korea is the
highest (14.7 deaths per 100,000 women) among the
OECD countries (average 4.86 deaths per 100,000
women)4. Hence, predicting depression and suicide risk is
a global problem, with exceptional importance in South
Korea. Therefore, developing effective models for pre-
dicting depression and suicidality may elucidate break-
through treatments.
The current depression and suicide prediction methods

rely on self-reported measures such as questionnaires and
interviews, which can be too subjective; and people with
depression and suicidal ideation may not be honest about
expressing their thoughts5. Thus, health records or neural
representations have been adopted, with machine learning
techniques, to predict the risk of depression and suicide6,7.
Identifying highly accurate biomarkers would also be an
ideal solution that would give an insight to our under-
standing of depression and suicide. Since the brain is the
target organ in psychiatry, brain-based biomarkers have
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been highly studied8. However, an invasive brain biopsy is
potentially dangerous, and therefore, biomarkers obtained
from the peripheral blood are a practical alternative.

Previous studies confirmed meaningful correlations of
methylation and expression profiles between the blood
and brain9–11. Several previous studies identified

Fig. 1 The study workflow and performance of the models. a The schema of study workflow, b The performances of the case classifier modes, b,
c The performances of the psychiatric score regression models for HAM17 (c) and SSI (d). SA, Suicide Attempt. MDD, Major depressive disorder. ACC,
accuracy. Sens, Sensitivity. Spec, Specificity. PPV, Positive predicted value. NPV, Negative predictive value
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methylation or gene expression biomarkers for depression
and suicide risk from the blood12–15. However, none of
them combined multi-omics data in a systematic manner
to develop models for depression and suicide risk pre-
diction, although applying machine learning to combine
different types of multi-omics data may improve predic-
tion accuracy16–18. Here, we present machine learning
and statistical prediction models for depression and sui-
cide risk prediction using blood-derived multi-omics data
(Fig. 1a).

Results and discussion
Baseline sample characteristics
We recruited three cohorts (age range: 19–46 years,

average: 28.6 ± 8.98 years): (i) 56 suicide attempters (SAs)
diagnosed with major depressive disorder; (ii) 39 non-
suicide attempters diagnosed with major depressive dis-
order (MDD); and (iii) 87 healthy individuals (control)
through the Korea University Medical Center. Impor-
tantly, most of the SA participants (51 of the 56, 91.1%)
were recurrent SAs that may also attempt suicide in the
future19, and 48 out of 56 SA participants had a history of
MDD (Tables 1, S1). We collected relevant data from the
participants: (i) questionnaires about their history of sui-
cide or depression; (ii) psychiatric scales, including the
Hamilton Rating Scale for Depression-17 (HAM17) and
the Scale for Suicidal Ideation (SSI); and (iii) peripheral
blood samples for methylome and transcriptome
sequencing analysis.

Building the psychiatric status classification and regression
models
To build the label classification and psychiatric scale

regression models, we identified differentially methylated

sites (DMSs, β-value difference >1% and
Benjamini–Hochberg adjusted P < 0.05) from Methyl-seq
data and differentially expressed genes (DEGs, fold change
>1.2 and Benjamini-Hochberg adjusted P < 0.05) from
whole-transcriptome sequencing data. Next, we per-
formed feature selection to further improve model per-
formance. For the model differentiating SAs from MDD
(SA vs. MDD classifier), 7353 DMSs were initially selec-
ted, but no DEGs were identified. After the feature
selection, 69 DMSs remained (Table S2), and 92.6%
accuracy was achieved by leave-one-out cross validation
(Fig. 1b). We also selected 12,633 and 10,412 DMSs (16
and 154 DEGs) as input features for the MDD vs. control
and SA vs. control classifiers, respectively. After the fea-
ture selection, 80 and 95 DMSs (0 and 7 DEGs) remained
as input features for the MDD vs. control and SA vs.
control classifiers, respectively (Tables S3 and S4). The
overall accuracies were 87.3% and 86.7% for the MDD vs.
control and SA vs. control classifiers, respectively (Fig.
1b). However, sensitivities were 59% and 67.9% for the
MDD vs. control and SA vs. control classifiers, respec-
tively, which were expected. There were no overlapping
input features among the classifier models.
To construct the psychiatric scale regression models, we

used the DMSs and DEGs that were significantly corre-
lated (Spearman’s rho > 0.2, P < 0.05) with the HAM17 or
SSI scores. For the HAM17 regression model, 2150 DMSs
and 80 DEGs were selected. For SSI, 1273 DMSs and 82
DEGs were selected. After feature selection, 810 and 467
DMSs (48 and 51 DEGs) remained for HAM17 and SSI
regression models, respectively (Tables S5 and S6). There
were 139 overlapping markers between the two regression
models. R2 values were 0.961 for HAM17 and 0.943 for
SSI (Fig. 1c, d). The area under the receiver operating
characteristic curve (AUC)—classifying MDD and control
—was 0.993 and 0.999 for the measured and the predicted
HAM17, respectively (Fig. 2a). The AUC—classifying SA
and control—was 0.951 and 0.976 for the measured and
the predicted SSI, respectively (Fig. 2b). The high AUCs
from the predicted HAM17 and SSI may compensate for
the low sensitivity of the case classifier models for the
MDD vs. control and SA vs. control.

Investigations of the model input features
Since input features were derived from the DEGs and

DMSs between groups, investigation of the input feature
could give insight into biomarkers significantly associated
with depression and suicide attempt. Most of the model
input features were methylation markers. This may be due
to more methylation markers (DMSs) than gene expres-
sion markers (DEGs) from the initial feature selection.
Interestingly, the gene expression markers were ranked
significantly higher, in terms of feature importance, than
the methylation markers only in the regression models

Table 1 Baseline sample characteristics

Trait SA MDD Control

Number of participants 56 (30.8%) 39 (21.4%) 87 (47.8%)

Average age 31.4 (10.9) 32.1 (11.4) 25.3 (3.5)

Sex, male: female 26:30 21:18 43:44

History of depression 48 (85.7%) 17 (43.6%) 0

History of suicide attempt 51 (91.1%) 0 0

Family history of depression 10 (17.9%) 7 (18.0%) 2 (2.3%)

Family history of suicide attempt 0 1 (2.6%) 0

Antidepressant use 52 (92.9%) 37 (94.9%) 0

HAM17 14.9 (6.0) 13 (5.4) 0.8 (1.4)

SSI 21.6 (8.9) 13.1 (7.3) 3.1 (4.9)

Number (percentage) or mean (s.d) of traits
SA suicide attempter, MDD major depressive disorder, HAM17 Hamilton Rating
Scale for Depression-17, SSI scale for Suicidal Ideation
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(Wilcoxon signed-rank test P values for HAM17 regres-
sion model: 2.3e-05, SSI regression model: 0.020). Hence,
the proportion of marker types in the initial step may not
have solely influenced marker types in the final model.
This may be due to the relatively more dynamic nature of
gene expression levels compared to methylation20. Simply,
the gene expression markers could more effectively
represent emotional state, since the psychiatric assess-
ment was performed together with blood sample collec-
tion in this study. However, methylation marker
dominance in the classifier models might be due to
traumatic experience-related methylation profile changes,
as reported previously21.
Next, we conducted a functional enrichment test to

investigate biological functions and pathways associated
with the input features for the models using DAVID
(Database for Annotation Visualization and Integrated
Discovery)22 (Tables 2, S7). No significant enrichment was
observed in biological functions or pathways for the SA vs.
MDD classifier input features (Benjamini-Hochberg
adjusted P < 0.05). However, the feature set included the
ARHGAP39 gene (Rho GTPase Activating Protein 39,
chr8:145809066, Fig. 3a), a previously reported methyla-
tion marker for suicide risk23 (Table S2).
We repeatedly observed the protocadherin (PCDH)

gene family from enriched biological terms in the feature
sets of SA vs. control classifier and HAM17 and SSI
regression models (Tables 2, S4–S7). The PCDH gene
family is relevant in neuron and synaptic functions, and its

methylation can be altered in response to early-life
stress24–27. A peripheral blood methylation study repor-
ted that monozygotic twins that are concordant and dis-
cordant for MDDs showed significant intra-pair
methylation differences for the PCDH genes28.
The Hippo signaling pathway was significantly enriched

in the MDD vs. control classifier feature set. This pathway
includes PRKCZ (Protein kinase C, chr2:202900702, Fig.
3b) and FZD7 (Frizzled Class Receptor 7, chr1:2010660,
Fig. 3c), which are known to be related to antidepressant
response29,30 (Table S3). Although this may be because
most (94.9%) of the patients with MDD in this study use
antidepressants, it might still suggest antidepressant
response as a possible predictor for MDD. This should be
validated separately, based on a larger and more diverse
cohort.
Here, we present machine learning and statistical models

to predict depression and suicide risk, using blood-derived
multi-omics data. Our classifier models showed compar-
able accuracies in predicting the correct labels for patients
with MDD, SAs, and healthy controls (Fig. 1b). Psychiatric
scales, such as HAM17 and SSI, were also successfully
predicted by our regression models (Fig. 1c, d). Although it
was marginal, the estimated psychiatric scales classified
participants better than the measured scores (Fig. 2a, b).
Our models may not guarantee their effectiveness when
applied to independent cohorts31, but our methodology
helps to fill in the gaps in our understanding of the
pathogenesis and treatment of psychiatric disorders.

Fig. 2 Receiver operating characteristic curves (ROC curve). ROC curves for classifying MDD and Control using the measured and the estimated
HAM17 (a) and SA and Control using for the measured and the estimated SSI (b)
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Methods
Participant recruitment, diagnostic assessment, and blood
sampling
The data in this study presented from three cohorts (i)

56 suicide attempters (SA); (ii) 39 major depressive dis-
order diagnosed patients (MDD); and (iii) 87 healthy
control samples (Tables 1, S1).
A total of 95 depressed patients, with or without suicide

attempts were recruited prospectively through the out-
patient psychiatric clinic of Korea University Anam
Hospital in Seoul, Republic of Korea from April 2015 to
August 2017. The groups were then classified to either SA
or MDD contingent on the suicide attempt (i.e. 56 suicide
attempters and 39 non-suicide attempters). The patients
were confirmed with the diagnosis (i.e. major depressive
disorder) by the board-certified psychiatrists (Ham BJ,
Baek JW and Lee HW) based on the Structured Clinical
Interview from the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (DSM-IV) Axis I dis-
orders (SCID-I). Basic demographic (e.g. age, sex, educa-
tion level) and clinical (e.g. antidepressant use, clinical
history) information was collected by diagnostic assess-
ments. The current clinical status was measured with
psychiatric scales: the Hamilton Rating Scale for
Depression-17 (HAM17)32 which indicates the severity of
depressive symptoms, and the 19-item Beck Scale for
Suicide Ideation (SSI)33.
There were 10 SAs who were recognized as acute

depressive patients with the following criteria: first, those
who have current HAM17 score over 14. Second, the
duration of current and past suicide attempts was
<3 months for those who have the recurrence of suicide
attempt (2 out of 10 SAs), or those who attempted suicide
for the first time (8 out of 10 SAs).
The healthy controls were recruited for the people

between 19 and 65 years of age from the community, in
which the advertisements were made. A total of 87 people
responded to voluntarily participate in the study. They were
assessed through the psychiatric diagnosis in the same way
as the patient groups were assessed and determined to have
none of psychiatric disorders in past and present.
The diagnostic assessment and blood sampling were

made on the same day. The participants’ ID were de-
identified after the diagnostic assessment and the blood
sampling. In accordance with the Declaration of Helsinki,
a total of 182 participants signed informed consents forms
about the research goals and procedures. All participants
were aware of the right to freely drop out of the study at
any stage (no participant dropped out). The study pro-
tocol was approved by the Institutional Review Board of
Korea University Anam Hospital (IRB No: ED15006). This
study was approved by Institutional Review Board at
Ulsan National Institute of Science and Technology with
UNISTIRB-15-11-C.Ta
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Methyl-seq
Genomic DNA was isolated from blood using the

DNeasy Blood & Tissue Kit (Qiagen, Germany) according
to the manufacture’s protocol. Extracted DNA was
quantified by Quant-iT BR assay kit (Invitrogen). Geno-
mic libraries were prepared using the SureSelectXT

Methyl-Seq Target Enrichment System for Illumina
Multiplexed Sequencing (Agilent Technologies). Briefly,
2 μg of genomic DNA per sample were randomly sheared
via ultra-sonification and DNA fragments between 150
and 200 bp were extracted. Sample DNA then underwent
end repair, adapter ligation, hybridization to SureSelectXT

Methyl-Seq Capture Library, streptavidin bead enrich-
ment, bisulfite conversion, PCR amplification and were
uniquely indexed using a 6-letter sequencing tag following
the manufacturer’s protocol. Sample genomic libraries
were then pooled and multiplexed in four separate lanes
using 100 bp paired-end Illumina NovaSeq6000
S4 sequencing.

RNA-seq
Total RNA was extracted using PAXgene blood RNA kit

from Qiagen (Qiagen, Germany), according to the manu-
facturer’s recommendations. RNA quality was assessed by
running 1 μl on the Bioanalyzer system (Agilent, CA, USA)
to ensure RIN and rRNA ratio. We used 100 ng total RNA
from all participants to prepare sequencing libraries with
by using the TruSeq RNA sample preparation kit (Illu-
mina, CA, USA). Quality of these cDNA libraries was
evaluated with the Agilent 2100 BioAnalyzer (Agilent, CA,
USA). They were quantified with the KAPA library
quantification kit (Kapa Biosystems, MA, USA) according
to the manufacturer’s library quantification protocol. Fol-
lowing cluster amplification of denatured templates,
sequencing was progressed as paired-end (2 × 100 bp)
using Illumina NovaSeq6000 S4 platform.

Bioinformatic analysis
The sequenced Methyl-seq and RNA-seq read were

filtered out when the read’ Q20 base content was lower
than 70%, using IlluQCPRLL.pl script of NGSQCToolkit
(ver 2.3.3)34. The filtered Methyl-seq reads were mapped
to the hg19 human genome assembly using Bismark (ver
0.14.5)35. Methylation information was acquired using
MethylExtract (ver 1.9.1)36. The acquired methylation
information was further refined as beta value, a propor-
tion of methylated bases at each locus. Only CpG sites
with minimum depth ten for equal or more than 75% of
samples for both batch and cohort were used. The beta
value was adjusted for batch, age, and gender using
Combat of SVA package (ver 3.24.4) in R (ver 3.4.0)37.
The adjusted beta-value was used for further analyses.
Differentially methylated site analysis was conducted
using methylKit package (ver 1.5.0) in R38. All methylation
sites were annotated with its positionally related genes
(including upstream and downstream 5 kb of gene
region). The filtered RNA-seq reads were mapped to the
hg19 human genome assembly using Mapsplice (ver
2.1.8)39 and gene expression was quantified using RSEM
(ver 1.9.1)40. The transcripts per kilobase million (TPM)
was adjusted for batch, age, and gender using Combat of
SVA package (ver 3.24.4) in R (ver 3.4.0)37. We identified
differentially expressed genes (DEG) using DESeq241.

Classifier and regression model construction
The three binary classification models (SA vs. MDD,

MDD vs. control and, SA vs. control) were constructed
using RandomForestClassifier in scikit-learn (ver 0.19.1)42.
The first step was the feature construction which uses
statistical significance of DMS and DEG in each model.
DMSs with beta value difference >0.01 and Benjamini-
Hochberg adjusted P < 0.05; and DEGs with fold change
>1.2 and Benjamini–Hochberg adjusted P < 0.05 for each

Fig. 3 Methylation box plots of the model features. a chr8:145809066, ARHGAP39. b chr2:202900702, FZD7. c chr1:2010660, PRKCZ
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comparison (SA vs. MDD, MDD vs. control and, SA vs
control) were selected as the feature. Then, the selected
features were filtered by feature selection which is the step
eliminates the irrelevant features acting as noise to improve
the prediction accuracy. For the feature selection, a tree-
based feature selection algorithm that calculates feature
importance based on the contribution of each feature to
model performance during training was used. The features
were removed if its feature importance derived from the
random forest algorithm during the training was zero.
During the training, a number of trees and max features
were selected until the out-of-begging (OOB) error rate
became stabilized. To verify the model performance, leave-
one-out cross validation was used. Two psychiatric scale
regression models for HAM17 and SSI were built using
LinearRegression in scikit-learn (ver 0.19.1)42. The features
were selected if the DMSs and the DEGs for each com-
parison (SA vs MDD, MDD vs Control and, SA vs Control)
were significantly correlated with HAM17 or SSI (Spear-
man correlation rho > 0.2 and P < 0.05). We used Select-
FromModel in scikit-learn for the feature selection.

Functional enrichment and pathway analysis
We conducted a functional enrichment test by using

DAVID22 with default parameters. DEGs and positionally
related genes with DMSs from the input feature of the
models are used for enrichment test. Only input feature
including significant DMSs and DEGs with more than
zero feature importance during the model training were
selected for functional enrichment test.
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