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Abstract—In a heterogeneous cluster, virtual machine (VM) placement for a distributed parallel application is challenging due to
numerous possible ways of placing the application and complexity of estimating the performance of the application. This study
investigates a holistic VM placement technique for distributed parallel applications in a heterogeneous cluster, aiming to maximize the
efficiency of the cluster and consequently reduce the costs for service providers and users. The proposed technique accommodates
various factors that have an impact on performance in a combined manner. First, we analyze the effects of the heterogeneity of
resources, different VM configurations, and interference between VMs on the performance of distributed parallel applications with a
wide diversity of characteristics, including scientific and big data analytics applications. We then propose a placement technique that
uses a machine learning algorithm to estimate the runtime of a distributed parallel application. To train a performance estimation model,
a distributed parallel application is profiled against synthetic workloads that mostly utilize the dominant resource of the application,
which strongly affects the application performance, reducing the profiling space dramatically. Through experimental and simulation
studies, we show that the proposed placement technique can find good VM placement configurations for various workloads.

Index Terms—Heterogeneous clusters, distributed parallel applications, VM placement algorithm, machine learning based

performance model

1 INTRODUCTION

HETEROGENEITY of hardware configurations for physi-
cal nodes exists in a cluster, as physical machines are
continuously purchased over time [1], [2], [3]. In most
cases, a cluster consists of physical nodes of several differ-
ent types. Each type of physical nodes is configured differ-
ently in terms of the CPU microarchitecture and clock
speed, the number of cores, the amount of memory, and
network and storage settings, providing different perfor-
mance capabilities. In heterogeneous clusters, various
applications can be deployed and executed together on the
same node, due to advances in multicore and virtualiza-
tion technologies.

A heterogeneous cluster is commonly used to run multi-
ple distributed parallel applications. For a distributed paral-
lel application, multiple virtual machines (VMs) form a
virtual cluster (VC) to run the application in parallel and
coordinate their execution by exchanging messages across
the VMs. Distributed parallel applications are popularly
employed to solve large scale complex scientific problems
such as those in molecular dynamics [4], [5] and computa-
tional fluid dynamics [6]. They are also used to process
huge amounts of data, as in Hadoop [7] and Spark [8].

In a heterogeneous cluster, for all VMs which execute a
distributed parallel application together, it may not be
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possible to allocate homogeneous resources on which the
application shows the best performance. This occurs espe-
cially with private cloud clusters on small and medium
scales, and even with clusters on a public cloud, where
some types of resources have been reserved for the cluster
over a long term to reduce the cost significantly (as in
Reserved Instances in Amazon EC2 [9]). To improve the
resource utilization and performance of the cluster, we can
configure the VMs of the application with heterogeneous
nodes.

When different resources are used to execute a distrib-
uted parallel application, there are numerous possible ways
to place the VMs of the application depending on factors
such as the number of different node types used for the
VMs, the number of VMs running on each type of (physical)
nodes, and the number of the nodes used for each type.
Moreover, even for the same VC configuration, the perfor-
mance of the application widely varies depending on co-
running VMs or applications, i.e., co-runners, which are exe-
cuted on the same nodes [2], [10], [11], [12].

When running a distributed parallel application, the het-
erogeneous hardware configuration and/or different levels
of interference on each of the nodes can slow down some of
the VMs. Depending on how parallelism and synchroniza-
tion are implemented for a distributed parallel application,
the outcome can differ. For distributed parallel applications
which are loosely coupled or have a load balancing feature
such as big data analytics applications [7], [8] and many-
task computing applications [13], a few slow VMs may not
affect the performance noticeably and using favored resour-
ces in part may improve the performance of the application.
However, for tightly coupled applications such as scientific
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MPI-based applications, one slow VM may cause the differ-
ent execution progress rates over VMs, degrading the final
performance significantly. Moreover, if the application has
poor parallel efficiency, adding more VMs does not improve
the performance, unlike loosely coupled applications. Thus,
estimating the application performance is not trivial, as the
effect of each factor such as the heterogeneity of resources,
interference, VM configuration, and parallelism pattern on
the performance is not clear.

Maximizing the efficiency of a cluster is crucial for ser-
vice providers such as cloud providers, as doing so reduces
the overall costs with an eventual price reduction for
users [3]. Moreover, a strategy for efficient VM placement
is necessary for providers to provide high quality services
to users and to enhance user satisfaction. However, in a
heterogeneous cluster, finding the best VM placement for
distributed parallel applications, which maximizes the
overall performance, is challenging due to the intract-
ably large search space and complexity of estimating their
performance.

Earlier studies investigate scheduling techniques which
take into account the heterogeneity of hardware configura-
tions and/or interference among applications [2], [3], [11],
[12], [14], [15]. However, some prior works mainly consider
single node applications [2], [12], [14], and a homogeneous
cluster is assumed for an interference modeling technique
for distributed parallel applications [11]. An interference
and heterogeneity aware scheduling technique focuses on
supporting applications popularly used in large scale
clouds or datacenters such as distributed analytics frame-
works, latency critical services, and web services [15]. The
technique employs a greedy approach to allocate and assign
the least amount of resources while still satisfying quality of
service (QoS) constraints of an application, thus reducing
the search space for placement.

This paper investigates a holistic VM placement tech-
nique for various types of distributed parallel applications
in a heterogeneous cluster, aiming to maximize the overall
performance for the benefit of service providers and users.
The proposed technique accommodates various factors that
have an impact on performance in a combined manner,
while reducing the search space and cost for the best VM
placement. First, we analyze the effects of the heterogeneity
of resources, different VM configurations, and interference
between VMs on the performances of various distributed
parallel applications. We then propose a placement tech-
nique that uses a machine learning algorithm to estimate
the runtime of a distributed parallel application for various
VM placement configurations.

For a heterogeneous cluster, the total search space for the
VM placement of distributed parallel applications is intrac-
table. Thus, we limit the candidate placements for the appli-
cations to a treatable subset of all possible placements in the
cluster. To find the best VM placement from the huge search
space, we also devise a VM placement algorithm based on
simulated annealing. To generate training samples for a per-
formance estimation model, a distributed parallel applica-
tion is profiled against synthetic workloads that mostly
utilize the dominant resource of the application, which
strongly affects the application performance, reducing the
profiling space dramatically.
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TABLE 1
Specifications of our Heterogeneous Cluster

Type T1 T2
Intel quad-core I7-3770 Intel hexa-core E5-2620

CPU (IvyBridge) 3.40 GHz  (SandyBridge) 2.0 GHz
# sockets 1 2

L3 8 MB/socket 15 MB/socket
Memory 16 GB 64 GB (32 GB/socket)
#nodes 8 4

Network 1GE 1GE

(Thr.) (~70MB/s) (~ 110 MB/s)
Storage 7,200 RPM HDD 7,200 RPM HDD
(Thr.) (~ 137 MB/s) (~ 109 MB/s)

The main contributions of this paper are as follows:

e We analyze the performance of various MPI-based
and big data analytics applications from SpecMPI
2007, NAS Parallel Benchmarks (NPB), Spark,
Hadoop, and molecular dynamics simulators in a
heterogeneous cluster.

e We explore the correlation between the dominant
resource usage and performance of parallel applica-
tions ultimately to lower the profiling cost.

e To estimate the performance, we apply a machine
learning algorithm in order to deal with the complex
performance modeling of a parallel application,
which must consider many the relevant factors dis-
cussed above in a comprehensive manner.

e We show that it is feasible to build a general model
which can estimate the performance of various
Hadoop and Spark applications. The model, which
is essentially built based on off-line profiling runs of
some number of big data analytics applications, can
estimate the runtime of a target application with any
size of input.

e Our extensive experiment and simulation results
show that the proposed placement technique can
improve the performance of a heterogeneous cluster
by placing VMs of multiple applications based on a
heterogeneity and interference aware performance
model and the simulated annealing approach.

2 METHODOLOGY

Heterogeneous Virtualized Cluster. In our default experiments,
we use a heterogeneous cluster which consists of 12 nodes
connected via 1 GE switch. Table 1 shows the specifications
of our heterogeneous cluster. In the cluster, there are two
different types of physical nodes. For type T2, each node
has 12 cores, but we use only 8 cores, 4 cores per socket, to
simplify the experiments. (Note that when all 12 cores are
used, there will be more possible placements, and our pro-
posed technique has no limitation on using all of them.)
Thus, 64 cores in total (i.e., 32 cores from each node type)
are used to run parallel applications. For the network
configuration, both T1 and T2 nodes are configured with
Gigabit Ethernet, but they are configured with different net-
working devices, i.e., T1 nodes with a low-end device and
T2 nodes with a high-end device. Therefore, T2 nodes show
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TABLE 2
Parallel Applications Used in our Experiments
Type Name Size Abbrev.
SpecMPI 2007 132.Zeusmp2 mtrain Zeus
NPB CG Class C CG
LAMMPS 5dhfr LAMMPS
MPI NAMD 5dhfr NAMD
GrepSpark 12.6 GB GS
Spark WordCount 9.5GB WCS
TeraGen 11.0 GB TG
Hadoop GrepHadoop 9.5GB GH

higher network throughput than T1 nodes. For the storage
configuration, both nodes are configured with the same
disk device, but due to differences in other hardware config-
urations, T1 nodes show higher storage throughput than T2
nodes. Note that the network and storage performances of
different types of VMs on clouds vary [16].

Xen hypervisor version 4.1.4 is installed on each of the
physical nodes, and for dom0, Linux kernel version 3.1.0 is
used. For a VM, it is configured with two virtual CPUs and
5 GB of memory. In all experiments, dom0 is pinned to all
cores allocated to the active VMs, which execute the work-
loads, as we assume virtualized cluster systems where no
dedicated cores are exclusively assigned to dom0 in order
to maximize the utilization of physical CPU cores and flexi-
bility with regard to resource use. Each parallel application
is configured with 8 VMs; therefore, four applications in
total can be placed on our cluster concurrently.

Note that it is possible to have a larger VM, i.e., one VM
per node. However, we observed that for resource inten-
sive applications, the performance can be improved when
the VMs are spread out over multiple nodes and executed
with an application which has different resource require-
ments. We can also use the resources more flexibly with
smaller VMs.

Distributed Parallel Applications. Table 2 presents parallel
applications and their sizes as used in the experiments. We
use different parallel workloads from SpecMPI 2007 [17],
NPB [18], Spark [8], Hadoop [7], and the two molecular
dynamics simulators of LAMMPS [4] and NAMD [5]. Thus,
there are four MPI-based applications, which are tightly
coupled, and four big data analytic applications, which are
loosely coupled. In this work, we focus on scientific and big
data analytics applications, as they have different character-
istics on communication and synchronization patterns and
can therefore show the different effects of resource hetero-
geneity and interference on the performance.

VC Configurations. In this experimental setup, the total
number of different VC configurations even for a single par-
allel application without considering the placement of co-
runners (i.e., VMs or applications running on the same
node) is 80. When placing a set of four parallel applications
in the default setting, the total number of possible place-
ments exceeds one million. Therefore, searching for the
optimal placement of a parallel application in a heteroge-
neous cluster against all possible placements is impossible.
To make the search process tractable, we need to limit the
candidate VC configurations of a parallel application.
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TABLE 3
VC Configurations Used in our Experiments
# of nodes
# of

Config VMs (# ZXI:IZ;) er List notation

T1 T2 T1 T2
C1 8 0 8 (1) 0 T1(1,1,1,1,1,1,1,1)
C2 8 0 4(2) 0 T1(2,2,2,2)
C3 4 4 4(1) 4(1) T1(1,1,1,1), T2(1,1,1,1)
C4 4 4 2(2) 2(2) T1(2,2), T2 (2,2)
C5 0 8 0 4(2) T2 (2,2,2,2)
Cé6 0 8 0 2(4) T2 (4,4)

In this setup, for each parallel application, we consider
two types of VC configurations with six configurations in
total, as shown in Table 3. In the table, a notation for a VC
configuration, which specifies the number of VMs in a node
used in the configuration for each node type, is also given.
For example, T2(4,4) describes a VC configuration in which
four VMs are placed in each of two T2 nodes.

We initially consider homogeneous VC configurations in
which the application only uses one type of nodes for its
VMs, with the number of VMs in each node used for the
application equal. For each type of nodes, two homogeneous
VC configurations, the most scaled out type, where the maxi-
mum number of nodes for the same type is used, and the
most consolidated type, where the minimum number of nodes
is used, are utilized. These configurations provide hardware
symmetry for the application. An application which requires
heavy communication among its VMs may prefer the most
consolidated type, while an application that can undergo
resource contention among its VMs may prefer the most
scaled out type, with a chance to run with other applications
with different resource usage characteristics.

Second, we consider symmetric heterogeneous VC configu-
rations, in which an application uses two different types of
nodes, but the total numbers of VMs in each node type are
equal to each other. For a pair of node types, we also have
two configurations, the most scaled out and the consoli-
dated types, where the numbers of the VMs in each node
are equal. By including these heterogeneous VC configura-
tions which have hardware asymmetry as candidates, we
can allow a parallel application to be assigned favored
resources partially, with the VMs of the application distrib-
uted across even different types of nodes. This may improve
the performance of the system.

3 PERFORMANCE ANALYSIS

3.1 Effects of Different VC Configurations

Recall that each VC configuration given in Table 3 varies
depending on the amount of resources used for each node
type (i.e., the number of VMs used for each type), and the
deployment of the VMs over the cluster (i.e., the number of
physical nodes used for the VMs per node type). Fig. 1
shows the runtimes of parallel applications without any co-
runners (i.e., solo runs) over the six VC configurations. For
the configurations, we can make three pairs, (C1, C2), (C3,
C4), and (C5, C6). The two configurations in each pair are
configured with the same amount of resources, i.e., the
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Fig. 1. Runtimes over different VC configurations.

same number of VMs, for each node type. From these
results, we can analyze the following.

Analysis 1: Each application has a different preferred node
type. As shown in Fig. 1, each application prefers to be exe-
cuted in either the T1 or T2 nodes depending on its resource
requirements. For the two different VC configurations of C2
and C5, which are identical except that C2 uses four T1
nodes, whereas C5 uses four T2 nodes, the resource usage
patterns of each parallel application are also analyzed in
Table 4. For the results in the table, we execute each applica-
tion without any co-runners and compute the average
resource usage over the VMs running the application dur-
ing the execution.

In these results, storage-intensive applications have bet-
ter performance in C2 compared to C5 because their storage
I/0 throughputs are higher in C2 (i.e., T1 nodes). On the
other hand, network-intensive applications have better per-
formance in C5, except for 132.Zeusmp2, as they can exploit
higher network I/O throughput in C5 (i.e., T2 nodes). The
performance of 132.Zeusmp?2 is mainly affected by the CPU
performance; therefore, it has a shorter runtime in C2.
Regarding CPU utilization, network-intensive applications
are also compute-intensive, almost fully utilizing the CPU
resources, while storage-intensive applications utilize fewer
CPU resources. Thus, in our heterogeneous cluster, big data
analytics applications prefer the T1 type, while MPI-based
applications (except 132.Zeusmp?2) prefer the T2 type.
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Analysis 2: The performance of an application is not always
improved proportionally to the amount of its preferred resource.
We can naively expect that the runtime of an application is
proportionally reduced as the number of VMs with the
favored type increases. However, there are applications that
perform quite differently from naive estimation. When we
compare runtimes in the three configurations of C2, C4 and
C5, which use a total of four (physical) nodes but the num-
ber of nodes per type is different, for 132.Zeusmp2 and CG,
which require tight synchronization among VMs, the per-
formance is not improved at all unless all of the VMs are
executed on the preferred nodes. On the other hand, for all
of the big data analytics applications, which are based on a
simple communication pattern with a built-in load-balanc-
ing feature, until half of the VMs are executed on the
favored T1 nodes, there is almost no performance degrada-
tion. The effect of heterogeneity on performance of parallel
applications is quite dissimilar depending on the synchroni-
zation and parallelism patterns.

Analysis 3: Even with the same amount of resources for each
type, the effect of how VMs are spread out or consolidated on the
performance depends on the application’s characteristic and used
resource type(s). When the VMs of an application are spread
out, they do not contend for the same storage or network
resource, whereas when the VMs are consolidated, VMs
running on the same physical node can have fast inter-VM
communication. Therefore, for storage-intensive applica-
tions, where communication among the VMs is not impor-
tant, they generally prefer the scaled out configuration with
less contention over storage 1/0O. However, for tightly cou-
pled parallel applications, the effects of contention on the
network I/0 and inter-VM communication jointly affect the
performance outcomes. Thus, the performance trend with a
different deployment pattern is not always the same with a
different resource composition. For 132.Zeusmp?2, its perfor-
mance on the most scaled out configuration (i.e., C1) is 15.91
percent higher than that on the most consolidated configu-
ration (i.e., C2) when the T1 node type is used, while the
performance on the most consolidated configuration (i.e.,
C6) is 5.95 percent higher than that on the most scaled out
configuration (i.e., C5) when the T2 node type is used. This

TABLE 4
Runtimes and Resource Usages of Parallel Applications in C2 and C5
C2 C5
Storage App CPU Util (%) I/0 Time CPU Util (%) 1/0 Time
user sys wait (MB/s) (sec) user sys wait (MB/s) (sec)
GS 17.20 1.06 30.99 14.60 134.82 22.59 1.81 30.37 11.49 159.14
WC 30.81 1.42 22.76 11.89 117.76 4441 2.48 18.13 9.70 144.34
GH 37.20 2.65 7.63 6.20 194.47 41.26 3.16 6.83 3.75 325.23
TG 38.26 5.82 8.45 19.95 198.76 51.98 7.71 15.53 16.10 246.09
C2 C5
Network App CPU Util (%) 1/0 Time CPU Util (%) 1/0 Time
user sys wait (MB/s) (sec) user sys wait (MB/s) (sec)
CG 71.96 27.16 0.17 16.74 380.85 72.32 26.33 0.23 24.04 263.52
LAMMPS 64.41 34.32 0.38 11.05 235.08 65.90 31.20 0.91 25.71 103.97
NAMD 45.44 52.58 0.73 8.49 140.05 56.16 38.40 1.81 22.18 53.97
Zeus 39.21 23.95 1.77 9.31 238.57 41.04 22.30 0.63 6.08 359.37
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Fig. 2. Runtimes of TeraGen and 132.Zeusmp2 with co-runners.

arises because it utilizes higher network bandwidth in C1
and C6 compared to C2 and C5, respectively. Similarly,
LAMMPS and NAMD show different trends when the T1
node type is used (i.e., C1 and C2), and when both the T1
and T2 types are used (i.e., C3 and C4).

3.2 Effects of Interference

To investigate the effects of interference on the performance
of a parallel application, we initially use a small virtual clus-
ter composed of 4 VMs running on 4 physical nodes (i.e., in
the most scaled out setting) so that we can have the same
setting using each of the T1 and T2 node types in our clus-
ter. Fig. 2 shows the execution times of TeraGen and 132.
Zeusmp?2 over the three different VC configurations of T1
(1,1,1,1), T2(1,1,1,1) and T1(1,1), T2(1,1). In the figure,
LAMMPS and GrepSpark are used as co-runners.

In the results, the interference effect caused by the same co-run-
ner can vary from one VC configuration to another. Unlike 132.
Zeusmp2 which exhibits a similar performance trend when
it co-runs with LAMMPS and GrepSpark over all three VC
configurations, TeraGen’s behavior with LAMMPS and
GrepSpark differs. In T1(1,1,1,1), the effect of LAMMPS on
the performance is similar to that of GrepSpark, but in the
other configurations, the performance degradation by Grep-
Spark is 8.94~22.38% higher than that by LAMMPS. Also,
the degree of the interference effect differs depending on the node
type. When TeraGen runs with GrepSpark, the performance
degradation of TeraGen is 15.61 percent in T1(1,1,1,1), while
it is 36.79 percent in T2(1,1,1,1) compared to solo runs on
each configuration. This occurs because when TeraGen and
GrepSpark, which are storage-intensive, run on T2 nodes
together, the disk I/O becomes a severe performance bottle-
neck. Therefore, to estimate the final performance of a paral-
lel application accurately, the resource type used and the
state of the co-runners for each VM must be considered
together.

We next study the effects of co-runners in our default
cluster setup (as given in Table 1) using workloads com-
posed of four application instances from Table 2. In order to
understand the performance trend with co-runners, we
measure the runtime of each of the parallel applications (or
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application instances) with various co-running applications
over the four VC configurations of C1, C3, C4, and C5.
(Note that for C2 and C6, each application is executed with-
out any co-running application.) For all of the experiments
running multiple applications concurrently, we repeatedly
ran applications until the last one finished, as the runtime of
each application is different.

Fig. 3 shows the speedup of each application over the four
configurations in each experimental run. For each applica-
tion, we have 148~388 experimental runs with different
co-running applications. In the figure, circles represent the
runtime with co-runner(s) in each VC configuration. For the
parallel applications, there is no single VC configuration in
which every application has the best or worst performance.
Therefore, for each of the results, the speedup of an applica-
tion is computed as the runtime of the application in the run
over the worst runtime among its solo runs in the six VC
configurations.

As shown in the figure, the performances of parallel
applications are significantly affected by co-running appli-
cations. For the big data analytics applications, they show
similar trends over the four configurations, but their
speedup values are quite different. For the MPI-based appli-
cations, they have quite different performance patterns over
the configurations. For 132.Zeusmp2, the range of the
speedup over various configurations is only from 0.68 to
1.65, but for NAMD, the range is from 0.67 to 5.04. More-
over, for LAMMPS and NAMD, co-runners can strongly
affect their performance in C5, given the widely varying
runtimes, unlike the other configurations of C1, C3, and C4
where the co-runner effects are relatively small.

To summarize the above results, in a heterogeneous clus-
ter, the performance of a parallel application is determined
by various factors, such as the heterogeneity, interference,
and VM deployment across the nodes, but how each factor
affects the final performance remains unclear.

3.3 Dominant Resource
Most parallel applications demand multiple resources, such
as CPU, memory, network I/O, and storage 1/0O, and the
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Fig. 3. Performance of parallel applications with co-runners on various VC configurations.
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demand for each type of resource varies depending on
the characteristics of the application. For each application,
we analyze the correlation between the performance and
resource usage patterns of CPU utilization, the number of
LLC misses per kilo-instruction, and the network and stor-
age bandwidths. The correlation coefficients from the analy-
sis are presented in Fig. 4. For all of the applications used in
the experiments except TeraGen, we observe that the perfor-
mance is closely correlated with the usage of one resource
type, either the network I/O or the storage I/O. For Tera-
Gen, there is strong correlation between its speedup and
both network I/O and storage I/O. We call a resource
(type) which mainly determines the performance of an
application the dominant resource of the application.

Fig. 5 shows the correlation between the dominant
resource usage and the application speedup for two diff-
erent types of parallel applications, storage-intensive and
network-intensive applications. In the result, the speedup
of a parallel application increases almost linearly as its dom-
inant resource usage increases. Note that in our experimen-
tal setting, cases in which the speedup is bounded even
when the bandwidth continues to increase because other
resources become a bottleneck do not occur.

4 PLACEMENT BASED ON MACHINE LEARNING

Recall that it is not possible to search for the optimal place-
ment of a parallel application in a heterogeneous cluster
against all possible placements. Therefore, we need to limit
the candidate VC configurations of a parallel application
and the VC placements of multiple applications, thus reduc-
ing the complexity of performance profiling and VC place-
ments. In this work, when placing a distributed application,
we consider only homogeneous VC configurations and
symmetric heterogeneous VC configurations, as discussed
in Section 2 for a cluster with two different node types.

Consider a heterogeneous cluster composed of 1" types of
physical nodes. To limit the number of the candidate VC
configurations, for each application, we can select £ types,
where k=2 x log, T, out of T" types. When selecting k types,
we can consider the resource preferences of parallel applica-
tions but also select several types randomly. For each
selected type, we have two homogeneous VC configurations
(i.e., the most scaled out and consolidated ones).

For heterogeneous VC configurations, we select k types
out of T" types again, and we use a maximum of 2° types out
of k per VC configuration, where s > 0 and 2° < k. There-
fore, a candidate VC configuration has 2, ..., or 2 node types,
where 0 < i < s, and the numbers of VMs running on each
node type are equal to each other. We assume that each VC
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Fig. 6. Examples of candidate VC configurations.

configuration composed of R VMs, where R > 2* and R mod
2% =0, is divided into 2° blocks, and each of the VMs in
the same block is executed on a (physical) node with
the same type. For each i where 0 < i <s, if 2! < k, we
generate log, T tuples from the selected k types such that
each tuple has 2’ node types, and for log, T tuples,
each selected type appears 2! times in total. If 2/ = k, we
generate one tuple composed of k types (as we cannot
create more than one because of (4 )=1). For each generated
tuple, we have two heterogeneous VC configurations
discussed above. In this way, the total number of the
candidate VC configurations we consider is computed as
2 x (k+ 37 min((}),log,T)), which is scalable as the
value of T increases. (Above, a rounded value of log,T
isused.)

For example, when we use a maximum of two node
types per VC configuration (i.e., s = 1), for homogeneous
VC configurations, we have k different types; thus, we have
2 x k configurations. For heterogeneous VC configurations
with two node types, we generate log,1" pairs from k types,
while for each pair, we have two configurations. Thus, the
total number of candidate VC configurations is 6 x log, T".

Moreover, we restrict the placement of VC configurations
for multiple applications such that for a VC configuration
composed of 2¢ blocks, each of the VMs in the same block
has the same set of co-runner(s). Fig. 6 shows two examples
of candidate VC configurations for a parallel application in
our default cluster setup with s=1.

Fig. 7 shows an overview of our placement technique. In
a heterogeneous cluster, a set of the candidate VC configu-
rations with homogeneous and heterogeneous resources is
computed for a parallel application. A model based on a
machine learning algorithm which can consider various rel-
evant factors conjointly is built to estimate the runtime of a
target application on a certain VC configuration. For MPI-
based applications with a diversity of synchronization pat-
terns, a target application that will be executed in the cluster
is profiled against a synthetic workload that mainly con-
sumes the dominant resources of the application to generate
training samples. For big data analytics applications based
on the same programming model, it is possible to generate
training samples by exhaustively profiling a small set of big
data analytics applications. The performance metrics mea-
sured during profiling are used as inputs to the model.

{ Simulated Annealing ‘

| ASingle Application |

VCPlacement Algorithm Best
" g

ASet of Applications

Performance Training
moal | @8 "oaa

Fig. 7. System overview.
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Fig. 8. Performances of GrepSpark, WordCount, and GrepHadoop.

Our placement algorithm can place a single parallel
application as the application is submitted to the cluster
(i.e., in the on-line mode), and it can make placement deci-
sions for multiple applications simultaneously (i.e., in the
batch mode). Because it is still infeasible to search for all
possible placements in most heterogeneous clusters, even
when we restrict the candidate VC placements for parallel
applications, we present a VC placement algorithm based
on simulated annealing which approximates the global opti-
mal solution [19]. The algorithm estimates the performance
of a hypothetical placement of applications using the perfor-
mance model, and explores the large search space for the
best placement. Similar placement approaches based on
simulated annealing and stochastic hill climbing have been
used for parallel applications in homogeneous clusters [11]
and for web-service workloads [3].

4.1 Performance Model

Big data analytics applications are based on the same pro-
gramming model of “map”, “shuffle”, and “reduce” to pro-
cess a large amount of data [20]. In addition, the size of the
input data has a significant impact on the runtimes of the
applications. Fig. 8a shows the average runtimes of GS,
WCS, and GH for five different input data of the same size,
on the C5 configuration. The standard deviation of the run-
times is also presented in the figure. Fig. 8b shows their run-
times over various input sizes on the C5 configuration,
where the sizes of “2x” and “3x” are two and three times
the size of “1x”. In the figure, the runtimes of the applica-
tions tend to increase in proportion to the input data size.
However, if the sizes of the input data are identical, the run-
times of the application are similar.

However, MPI-based applications have various commu-
nication and synchronization patterns [21], [22]. Moreover,
their performances are affected by various parameters
which are usually specific to each application. (For example,
in molecular dynamics simulators, the performance is
affected by the number of atoms, the molecular topology,
the cut-off distance between the atoms, etc. [10].)

Figs. 9a and 9b present the results of a principal component
analysis (PCA) with 95 percent confidence ellipses, which
present the regions including 95 percent of samples, for the
big data analytics and MPI-based applications, respectively.
The analysis in each case is performed on the measured run-
times of the parallel applications with various co-runner
states in the C5 configuration to understand the performance
trend of the applications under various interference settings.
For each type of applications, an identical set of co-running
synthetic workloads (which mainly utilize the domin-
ant resource of the corresponding type as discussed in
Section 4.1.1) is used to generate interference. In the figures,
the similarity of the big data analytics applications and the
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Fig. 9. Principal component analysis.

dissimilarity of MPI-based applications are apparent, as the
regions of big data analytics applications overlap but those of
MPI-based applications are separated. Therefore, for big data
analytics applications, we build one general performance
model based on the off-line profiling of a few big data analyt-
ics applications. For a target big data analytics application
that will run in the cluster, our modeling technique requires a
limited number of profiling runs with a certain size of input
data, and the built model can estimate the runtime of the
target application for different input data of any size.

For MPI-based applications, we build a model for each of
the applications. In this work, we do not associate the model
with different inputs (for example, different proteins and
cut-off distances for molecular dynamics simulators). How-
ever, our model can be combined with other modeling tech-
niques [10], which consider different inputs when modeling
MPI-based applications such as NAMD and LAMMPS in a
homogeneous cluster, in order to eliminate the need for pro-
filing with each different input.

4.1.1  Generating Training Samples

We generate training samples by the off-line profiling of a
parallel application over various setups. Based on the obser-
vation that the performance of a parallel application tends
to be directly correlated with the usage of its dominant
resource in Section 3.3, we reduce the profiling runs of the
application significantly through the use of a synthetic
workload that mainly consumes its dominant resource.
During the profiling step, synthetic workload mixes which
utilize all types of resources are not used.

We implemented two types of synthetic workload gener-
ators with different intensity levels. For a synthetic work-
load using the network resource, for a pair of VMs, each
VM sends and receives some number of messages to/from
the other VM every second. For a synthetic workload using
the storage resource, each VM reads and writes some
amount of data from/to its local file system every second.
For each of the network and storage synthetic workloads, as
the intensity of each workload increases, the network and
storage bandwidths of a VM running the workload also
increases. When profiling an application in each VC config-
uration, interference is generated in a block as a unit by run-
ning synthetic workloads with the same intensity in all of
the remaining VMs on each node of the block, and each
block can have a different interference level.

While profiling a parallel application, we measure various
performance metrics for each VM of the application, and
then compute the average or some aggregated value of each
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metric over the VMs. For the performance model, the metrics
of CPU idle % and user %, send and receive for network I/O
(in MB/s), and read and write for storage I/O (in MB/s) are
selected as inputs, as they are highly correlated with the per-
formance of the application. Note that the profiling process
below needs to be done only once, unless the physical hard-
ware configurations of the cluster are changed.

Profiling of Big Data Analytics Applications. We perform
exhaustive off-line profiling for a small set of big data analyt-
ics applications such that various behaviors of big data ana-
lytics applications are contained in a set of training data. For
an application in the set, we run it without any co-runners
and also with synthetic workloads as co-runners over all of
the VC configurations. We also profile the runtimes of the
application with other parallel applications in the set. To
make the model estimate the runtime of an application with
different input sizes, for each of the parallel applications in
the set, we also profile it with several input files of different
sizes. Moreover, we generate training samples that show
the correlation between the runtimes and input sizes from
profiled data with different input sizes.

In addition, for target Hadoop and Spark applications that
will run in the cluster, we need to profile each of the applica-
tions for certain input data (whose size is reasonably small)
without any co-runners and with synthetic workloads of its
dominant resource in all VC configurations. Exhaustive pro-
filing for the target applications is not necessary.

Profiling of MPI-Based Applications. To generate training
samples for each MPI-based application, we profile its run-
times without any co-runners, and only with synthetic
workloads in each candidate VC configuration. To build an
individual model for each application, additional profiling
runs with real applications are not necessary.

4.1.2 Building Machine-Learning Based Models

In a performance model for a target application Ayy4er, We
basically provide the following as inputs.

A target VC configuration VCy,ge;-

The solo run runtime of Ay and the average per-
formance metrics over all of the VMs of A4 On
VCi4rger measured during the solo run.

e In each of blocks on V(4 e, for each co-running
application C; on the block, the average performance
metrics over the VMs of C; running on the block
measured during the solo run.

For the models of MPI-based applications, their solo run
runtimes (with the target input data) in all of the candidate
VC configurations are profiled off-line. Therefore, the mea-
sured information is used as the input. On the other hand,
for the general model of the Hadoop and Spark applica-
tions, the model uses previously profiled information per-
taining to the runtime and metrics of the solo run of a target
application for certain input data as inputs in order to pre-
dict the runtime with target input data whose size can differ
from the profiled size. In consequence, this model addition-
ally takes the sizes of the current target input and (esti-
mated) output data along with those of the previously
profiled run for the same application as inputs.

We attempted various machine-learning techniques
using Weka [23], and concluded that Reduced Error Pruning
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Tree (REPTree) shows the best performance for our perfor-
mance estimation. Machine-learning techniques such as
ANN [24], SVM [25], and Gaussian Process Regression [24]
do not work well if a given training data set cannot be fitted
in any kernel functions. For our modeling problem, the
function was not built properly from the inputs and outputs
in our training set, resulting in huge error rates. Both Ran-
domTree and REPTree are decision tree learning based
algorithms [23]. In a decision tree, every non-leaf node splits
the data space into subspaces based on an input attribute
and a threshold, and every leaf node is assigned a target
value [26]. In our decision tree, attributes which represent
Avargets VCiarger and applications co-running on VCj,ge; dis-
cussed above are used. As the data spaces are partitioned
based on important attributes that determine the perfor-
mance, a decision tree is suitable for our problem. By fol-
lowing the root to a leaf node in the tree with the given
input values, the estimated runtime of Ay, is presented at
the leaf node.

When constructing a tree, REPTree considers all of the
input attributes to make a branching decision, and it prunes
the tree using reduced-error pruning. On the other hand,
RandomTree considers a set of K randomly selected attrib-
utes at each node to build a tree, and performs no pruning.
For our runtime estimation, we selected attributes that can
reflect the performance of various parallel applications care-
fully and provided them to the models as inputs. Hence, by
considering all of the attributes, REPTree works better than
RandomTree in our study.

With modeling based on REPTree, we use a regression
tree mode which predicts the output in the form of a real
number to estimate the runtime of Ayger 0N VCigrger. To
improve the model accuracy and avoid over-fitting, we
used bagging, also called bootstrap aggregating [27]. Simi-
larly, bagging has been used to lower the error rates of per-
formance models for HPC workloads on a multi-core
system [28]. For bagging, we generate 100 training sets by
sampling, from all of the training samples we have, uni-
formly and with replacement. We then build 100 models
using the 100 training sets. Finally, we compute the average
of the estimated runtimes from the models as the final
estimation.

The accuracy of a model based on REPTree is affected
by the quality of a training data set, as the model is built
by recursively partitioning a training data set to subsets
based on input attributes. To have an accurate model,
training samples in the set need to have similarity to
instances of real workloads running on the cluster. If the
values of input attributes for an application (i.e., perfor-
mance metrics) are very different from those in the train-
ing set, the model is unlikely to estimate the runtime
accurately. In such a case, the model can be re-trained by
adding this application’s samples to the training set, as
discussed in earlier work [28].

4.2 Placement Based on Simulated Annealing

Our simulated annealing based placement algorithm can
make placement decisions in both the batch and on-line
modes. To place VMs for a given set of new applications (or
a single application), we initially hypothetically distribute
the VMs of the applications randomly over available nodes
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in a heterogeneous cluster, and estimate the performance of
the applications with this random placement. To find the
best placement, we change the hypothetic placement by ran-
domly selecting one application from the new applications,
placing it in a different VC configuration, and then adjust-
ing the other new applications affected by this new place-
ment. We then compute the performance again for a new
placement state. If the estimated performance in the new
state is better than that in the previous state, we can con-
clude that the new placement is better. In such a case, we
always move to the new state. If the move results in a worse
state, we probabilistically move to the new state. The above
process is repeated for a predefined number of iterations. In
the algorithm, we basically consider candidate VC configu-
rations for applications and the placement of applications
that satisfies our restriction on co-runners as discussed
above. Note that if none of the candidate VC configurations
of a parallel application is available in a cluster, then a VC
configuration which is closest to one of the candidate VC
configurations can be used.

In this work, when placing VMs in a heterogeneous cluster,
we aim to maximize the overall speedup for parallel applica-
tions running in the cluster. To estimate the overall speedup
in a certain placement, the algorithm initially estimates the
runtime of each application based on the performance model,
and subsequently computes the speedup over the worst run-
time among its solo runs in the candidate VC configurations.
It then uses the geometric mean of the speedups of all the
applications for the performance, as the range of speedups
under different placements differ for each application.

5 RESULTS

5.1 Performance Estimation Accuracy
We evaluate our performance models using a heteroge-
neous cluster composed of 12 nodes with two node types,
as described in Section 2. For each Hadoop and Spark appli-
cation in Table 2, we use two additional sizes, i.e., sizes
which are two and three times larger (i.e., 2x and 3x) than
the specified size (i.e., 1x) in the table to evaluate the model.
For synthetic workloads used on profiling, there are five
levels of intensity for each type of synthetic workloads. For
each VC configuration composed of two blocks, we run a tar-
get application with a synthetic workload on only one of the
blocks and also both of the blocks (if possible). This is done
for each intensity level. For example, in C3, we have five pro-
filing runs only by running synthetic workloads on the T1
block, five runs only by running them on the T2 block, and
five runs by running them on both of the blocks. In a virtual-
ized system, dom0 is required to handle I/O requests
from VMs. Thus, if a VM in a node does not use the CPU
intensively, the performance of dom0, which handles 1/O
requests of other VMs running in the same node, can be
noticeably improved. With regard to network-intensive
applications used in our experiments, most of them fully
utilize the CPU, unlike the storage intensive applications;
thus, if co-running VMs do not fully use the CPU, their run-
times can be reduced. To model these cases, we make a net-
work synthetic workload which can use the CPU at the two
levels of ~50% and ~100% of a VM. For storage synthetic
workloads, only one CPU level of ~50% is used.

1419
TABLE 5
Validation Results of Applications

App Error(%) App Error(%)
Zeus 12.71 GS 21.36
CG 21.42 WCS 16.22
LAMMPS 18.24 TG 21.72
NAMD 20.73 GH 34.27
Average 21.84 Average 23.39

For each of the Hadoop and Spark applications in Table 2,
we profile it with small size input (i.e., half the size of 1x) for
six solo runs, and 40 co-runs with synthetic workloads,
except for TeraGen. For a collection of applications for
exhaustive profiling, we use the five additional applications
of WordCountHadoop, JoinHadoop, ScanHadoop, SortHa-
doop and TeraSortHadoop. We also perform exhaustive
profiling of the target applications. However, to demon-
strate that the model can estimate the runtime of the
Hadoop or Spark application Apigpe, for any input size
without heavy profiling, we remove all training samples
that contain any data of Ap;;par, from the set of training sam-
ples obtained by exhaustive profiling. Subsequently, we
build the model using a subset of training samples which
does not include any samples of Ap;ypa, along with previ-
ously profiled samples of Ap;;p., With a small input size.
Finally, we predict the runtime of Api;pata With the given
target input data, similar to the evaluation method in earlier
work [28]. Note that for TeraGen whose performance is cor-
related with both the network I/O and storage I/O, we built
three models with storage synthetic workloads, network
synthetic workloads, and both types of synthetic workloads.
There were no major differences among the error rates
of the three models. We used the model with network
synthetic workloads (of 80 profiling runs) in our study, as it
has the lowest error rate.

To profile each MPI-based application, we have six solo
runs, and 80 co-runs with network synthetic workloads.
Note that many MPI-based scientific applications, including
the MPI-based applications used in this experiment, iterate
a given number of time steps for the execution; in many
cases, the runtime of each time step (i.e., each iteration) is
uniform, as demonstrated in the literature [10], [29]. Thus,
for such an MPI-based application, we can have each profil-
ing run only with a small number of time steps instead of
running all of the iterations specified for the application and
predict the actual runtime proportionally to the number of
time steps. By exploring this iteration-based pattern, the
profiling overhead can be reduced significantly.

Table 5 shows the average error rates of the REPTree
models with bagging for the parallel applications, where
100~180 and 166~406 test cases were used for MPI-based
and big data analytics applications, respectively. The error
rate in each test case is computed as |7ess — Toet | /Tact X 100,
where 7., and 7,y are the estimated and actual runtimes,
respectively. Each of the built models is validated using the
experimental results of the application running together
with other parallel applications in our cluster. To evaluate
the accuracy of the big data analytics model, which can esti-
mate the runtime of an application with different input
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sizes, we used a set of testing data which includes the exper-
imental runs using three different input sizes for each
application.

In the REPTree models, for nodes in higher levels of a
tree, attributes representing a target VC configuration are
used the most (especially for root nodes), followed by attrib-
utes related to the dominant resource usage of a target
application, as they are critical features to determine the
runtime of a target application.

When ANN, SVM, and Gaussian Process Regression are
used, the average error rate is very high, especially for MPI-
based applications. For these algorithms, the average error
rates for the MPI-based and big data analytics applications
exceed 100 and 60 percent, respectively. These rates are not
acceptable for reliable performance models. With Random-
Tree and REPTree (without bagging), the respective average
error rates are 45.76 and 26.22 percent for big data analytics
applications, while the corresponding error rates are 24.68
and 22.53 percent for MPI-based applications. REPTree
with bagging provides greater accuracy than the other
algorithms.

Note that we have attempted to have one model of the
MPI-based applications based on exhaustive off-line profil-
ing of a few MPI-based applications, similar to the general
model of the big data analytics applications. For target MPI-
based applications, their profiling runs only for solo runs
are used in a training data set. However, the error rates are
quite high as up to 45 percent, given that MPI-based appli-
cations show quite different characteristics, as analyzed in
Section 4.1.

5.2 Experimental Results on a Cluster with
Two Types

5.2.1 Methodology

We experimentally evaluate the performance of our ML-
based placement technique using a real cluster with two
node types as described in Section 2. When placing parallel
applications on the cluster, our simulated annealing based
placement algorithm uses the performance model built in
Section 5.1 to estimate the runtimes of applications for a
hypothetical placement. We compare our technique (ML-G)
with the following five heuristics:

e Random placement (Random): This heuristic ran-
domly places parallel applications among the candi-
date VC configurations.

e Greedy placement (Greedy): This algorithm places a
parallel application in one of the most consolidated
homogeneous VC configurations, where the applica-
tion has the smallest solo run runtime, if it is avail-
able. This is inspired by the greedy algorithm in
Quasar [15], where for an application, the scheduler
initially sorts server types according to their perfor-
mance and then selects servers which is capable of
higher performance in the sorted order while
attempting to pack the application within a few
servers.

e Heterogeneity-aware interference-ignorant place-
ment (HA): This algorithm considers the effect of diff-
erent VC configurations with heterogeneous resources
on the performance of a parallel application. It places a
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TABLE 6
Workloads Used in our Experiments
Appl App2 App3 App4 S:N:B
WL1  WordCount WordCount  TeraGen Zeus 2:1:1
WL2  GrepSpark WordCount CG NAMD  2:2:0
WL3  WordCount  TeraGen LAMMPS Zeus 1:2:1
WL4  GrepSpark TeraGen NAMD Zeus 1:2:1
WL5  WordCount GrepHadoop  TeraGen CG 2:1:1
WL6  GrepSpark  GrepSpark NAMD LAMMPS  2:2:0
WL7  WordCount GrepHadoop = NAMD LAMMPS  2:2:0
WL8  GrepSpark  GrepSpark WordCount GrepHadoop 4:0:0
WL9 CG LAMMPS NAMD Zeus 0:4:0

parallel application in one of its candidate VC configu-
rations based on their solo run runtimes in a greedy
manner. It assigns the application an available VC con-
figuration with the smallest runtime, without reflect-
ing possible interference effects caused by co-runners.

e Interference-aware heterogeneity-ignorant placement
(IA): If two parallel applications which have the
same type of dominant resource are placed together
on a set of the same nodes, their performance will
be degraded, as they compete for the same type of
resources in the nodes. To reduce the interference
effect, this algorithm creates groups of two for given
applications such that two applications with different
dominant resource types are paired, if possible, and
then places each pair randomly (on C1, C3 or C5 in
our setup), being oblivious to the heterogeneity of
resources. Note that this approach can be used only in
the batch mode.

e MlL-based placement with individual models
(ML-1I): This algorithm places a parallel application
in the same manner as ML-G except that the individ-
ual modeling approach is also used for Hadoop and
Spark applications. For target Hadoop and Spark
applications, the profiling overhead for ML-I can
exceed that for ML-G, which can use small input size
for profiling.

For the experiments in this section, we provide a set of
four applications as input to the placement algorithms (i.e.,
batch mode). In Greedy and HA, we need to order multiple
applications in the set. For each application, we compute
the maximum speedup as Tyorst/Tbest, Where rygrg and rpes
are the runtimes of its worst (i.e., longest) and best (i.e.,
shortest) solo runs between the C2 and C6 configurations
for Greedy and among the six candidate VC configurations
for HA. Then, we sort parallel applications in a workload in
a decreasing order of their computed maximum speedups.
For each application in the sorted order, Greedy and HA
make a placement decision. For Random and IA, the aver-
age performance of five random placements is shown in
the results.

Table 6 presents the nine workloads used in our experi-
ments. The ratio of the number of storage-intensive app-
lications (denoted as “S”), that of network-intensive
applications (denoted as “N”), and that of applications uti-
lizing both network and storage resources (denoted as “B”)
in each workload is also given in the table. For the big data
analytics applications, the input sizes (i.e., 1x) described in
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Fig. 10. Speedups of workloads, normalized to the best placement.

Table 2 are used in these workloads. The workloads are
selected such that there are various ratios of the numbers of
storage-intensive, network-intensive, and storage-network-
intensive applications, including two homogeneous work-
loads that are composed of only one type of applications. In
our experimental setup, the total number of candidate
placements for four applications is 74. For each workload,
we explore all of the candidate placements to find the best
placement of the four applications (Best), which has the
maximum geometric mean of the speedups.

5.2.2 Experimental Results

Fig. 10 shows the speedup of each of the nine workloads (on
the geometric mean), normalized to that of the best place-
ment. Our ML-based placement technique ML-G achieves
96.13 percent of the performance of Best on average. The
performance improvements of ML-G compared to Random,
Greedy, HA, and IA are 24.80,12.95,10.61, and 21.11 percent
on average, respectively. The performance of ML-G is fairly
comparable to that of ML.-I, which achieves 97.72 percent of
Best on average. With regard to homogeneous workloads,
they are less sensitive to the placement configuration, as they
consist of similar applications in terms of preferred resources
and interference effects. Thus, the performance difference
between good and poor configurations becomes smaller.
Our performance models have modest error rates, but the
models can compute the relative performance gap between
different placements and distinguish between good and
poor placements reasonably well.

For various algorithms, we analyze the complexity of
profiling overhead for a target application with the corre-
sponding target input in a cluster which has 7" node types.
With Greedy, HA, IA, and ML-I, the profiling complexity is
O(logT), while with ML-G, no additional profiling is not
required, because we use the previously profiled informa-
tion for the application (possibly with a different input
size). In our setup of a cluster with two types, for Greedy,
HA, and IA, two, six, and three solo runs are profiled,
respectively. For ML-I, 46 and 86 runs are profiled for stor-
age and network intensive applications.

We subsequently analyze the best placements of the
workloads in our heterogeneous cluster. Table 7 indicates
that there is no single best placement that works for all
workloads, despite the fact that there is a tendency of
network-intensive applications to favor T2 nodes that pro-
vide a higher network I/O bandwidth, while storage-inten-
sive applications prefer to be placed on T1 nodes where
they have only one co-runner VM and may use more of the
storage I/O resource. Five different sets of VC configura-
tions are used for the best placements. Even when the same
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TABLE 7
Best Configuration for Each Workload
Appl App2 App3 App4

WL1 WCS:C1 WCS:C3 TG: C3 Zeus: C5
WL2 GS:C3  WCS: C2 CG:C3 NAMD: C5
WL3 WCS:C3 TG: C3 LAMMPS: C5 Zeus: C2
WL4 GS:C3 TG:C3 NAMD: C5 Zeus: C1
WL5 WCS:C1 GS: C5 TG: C1 CG: G5
WL6 GS:C3  GS:C3 NAMD: C5 LAMMPS: C1
WL7 WCS:C1 GH:C1 NAMD: Cé6 LAMMPS: C6
WL8 GS: C1 GS:C3 WCS: C3 GH: C5
WL9 CG:C5 LAMMPS: C5 NAMD: C2 Zeus: C2

set of VC configurations is used to place four applications,
depending on the combination of applications, the same
application can be assigned a different VC configuration.

Recall that we include two heterogeneous VC configura-
tions as the candidate VC configurations for a parallel appli-
cation. All of the best placements except for WL5, WL7 and
WL9 use the heterogeneous VC configuration of C3, and all
of the applications placed in C3, except for CG in WL2, are
storage-intensive big data applications. For big data analyt-
ics applications, the performance can be improved by allo-
cating the favored nodes partially, and the performance can
be enhanced if their VMs are executed with other applica-
tions over different nodes, with less contention over the
same types of resources. This result shows that it is benefi-
cial to exploit heterogeneous VC configurations with hard-
ware asymmetry.

5.3 Large Scale Simulations

To evaluate our placement technique in a large-scale hetero-
geneous cluster, we simulated the placement algorithms
using runtime traces collected from real experiments in our
12 node clusters. In our simulations, a heterogeneous cluster
consists of 80 T1 nodes and 40 T2 nodes, 120 nodes in total,
with the same configuration of VMs and candidate VC con-
figurations used as in Sections 5.1 and 5.2.

The simulator, which was implemented in C++,
computes the placement of 40 parallel applications. In
our ML-based algorithm, for a hypothetical placement, it
estimates the speedup for a parallel application based
on the performance model built in Section 5.1. For a final
placement determined by the algorithm, the simulator
computes the geometric mean of the speedups of 40 appli-
cations using their actual runtimes as measured in our
12 node cluster with the same VC and co-runner configu-
rations. Note that due to the limited cluster setup used
here, in some cases we were not able to generate precisely
the same placement of a parallel application with co-
runners computed by the algorithm. In such cases, we
used the runtime of an application measured in the config-
uration closest to the computed case. We also imple-
mented the simulator of HA in a similar manner, while for
Greedy, we were able to evaluate the performance based
on measured solo run runtimes.

Fig. 11 shows the speedups of the four workloads of
WL1, WL3, WL5 and WL6 (in Table 6) on a large cluster in
the batch and on-line scheduling modes. In a workload, ten
instances of each application are submitted. In the figures,
the speedups are normalized to those of ML-1I, as searching
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for the best placement is infeasible with a large cluster. In
the on-line mode, we assume that 40 applications are sub-
mitted at the same time, but there is an order among them.
Each application is placed in sequence in the submission
order. For a workload, five submission orders are randomly
selected. The average value of the five runs is given in
Fig. 11b.

In the batch mode, compared to Greedy and HA, our
ML-G improves the performance by 14.32 and 14.70 percent
on average, respectively. In the on-line mode, the perfor-
mance improvements with ML-G are 15.09 and 15.05 percent
on average, compared to Greedy and HA, respectively.
With individual models in ML-I, the performances improve
correspondingly by 3.79 and 3.60 percent in the batch and
on-line modes, compared to ML-G.

Because the on-line algorithm only considers the place-
ment of one application at a time, and it cannot change the
placements of existing applications in the cluster, the num-
bers of possible VC configurations and placements for the
application are reduced during on-line scheduling. A sub-
mission order of applications in a workload affects the
performance of each placement technique. However, in
our simulation runs, in no case do Greedy and HA show
better performance than ML-G. The minimum performance
improvements of ML-G, compared to Greedy and HA,
over all of the runs of the four workloads, are 4.54 and
1.34 percent, respectively.

5.4 Experimental Results on a Cluster with
Four Types

We investigate the performance of our placement technique
in a heterogeneous cluster composed of 20 nodes with four
different node types. In addition to T1 and T2, each node
in T3 is configured with two Intel octa-core E5-2640 v3
(Haswell) 2.60 GHz processors, 20 MB L3 per socket, 32 GB
memory, and Gigabit Ethernet, and there are four T3 nodes
in the cluster. Each of T3 nodes has two sockets, but we
only use one socket with 8 cores. To have another node type
T4, we change the CPU frequency of four nodes that have
the same specification as T3 nodes to 1.60 GHz. The network
throughput of T3 and T4 is similar to that of T2.

In the experiment, we use WL1 shown in Table 6. We
have two instances of each application in WL1 and the
workload is composed of a total of eight application instan-
ces. For the on-line mode experiments, five submission
orders of eight applications are randomly selected, and the
average value of the five runs is presented below. Recall
that in a cluster with 7" node types, we select k = 2 x log, T’
types out of 7', and we use up to 2° types per heterogeneous
VC configuration, where s > 0 and 2° < k. In the cluster
with four node types (e, T = 4), we evaluate the
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performance of our placement technique for two cases
where a candidate VC configuration uses a maximum of
two node types (i.e., s = 1) and four node types (i.e., s = 2).

There is a trade-off between the potential performance
enhancement using more node types per VC configuration
and the overhead to profile applications and search for the
best placement. As 7" and s increase, the numbers of candi-
date VC configurations for an application and profiling runs
of the application increase. For each parallel application, the
total numbers of the candidate VC configurations with s =1
and s =2 are 12 (= 6 x log, T) and 14 (= 6 X log,T + 2),
respectively, as discussed in Section 4. (Note that due to the
limited cluster setup used in the experiments, we have 13
candidate VC configuration with s = 2.) When building mod-
els for the applications in WL1, the number of profiled runs
of each application against synthetic workloads with s =2 is
2.5 times larger than that with s = 1.

When up to two types are used (i.e., s = 1) for a VC con-
figuration, for the batch mode, the performance of ML-T is
11.66 percent, and 13.29 percent better than those of Greedy
and HA, respectively. For the on-line mode, the performance
of ML-T is 14.45 percent, and 13.93 percent better than those
of Greedy and HA, respectively. For the batch and on-line
modes, the respective performance improvements with
using a maximum of four types (i.e., s = 2) are 6.38 and
3.64 percent, compared to using a maximum of two types.

In our experimental results, when using more node types
per VC configuration, much higher profiling overhead is
required, but the performance gain tends to be relatively
small with considering the overhead. For 132.Zeusmp2, it
tends to have no performance gain by utilizing heteroge-
neous resources and it is less affected by interference as
shown in Section 3. Thus, 132.Zeusmp?2 still prefers to be
placed on nodes with the favored type, ie., T1 nodes,
regardless of which application co-runs on T1 nodes, and
consequently, a heterogeneous VC configuration with four
node types is not selected for 132.Zeusmp2. With regard to
WordCount, the performance can be better on a VC configu-
ration with all of T1, T2, T3 and T4 node types, compared to
a VC configuration with T3 and T4 node types. Therefore,
WordCount is placed on a VC configuration with all of the
four node types to improve the performance. However, a
VC configuration with T3 and T4 types is also used for
WordCount, when one of the four node types is exhausted
by other applications in the workload. Depending on the
combination and submission order of applications in a
workload, it is possible that heterogeneous VC config-
urations is not well utilized, having small performance
improvement. Even when a cluster has a large number of
heterogeneous node types, it may be effective enough to use
a small number of node types to run a parallel application
(instead of using all the node types per VC configuration)
while keeping the profiling overhead of the application
within reasonable bounds.

5.5 Discussion

Effects of Profiling Against Mixed Synthetic Workloads. In our
12 node cluster described in Section 2, the storage and net-
work intensive applications have 40 and 80 profiling runs,
respectively, with synthetic workloads with five intensity
levels, which mainly use the dominant resource. However,
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when a synthetic workload which utilizes the CPU, network
and storage resources in a mixed manner is used, both types
of the applications end up having 400 profiling runs. For
WordCount and 132.Zeusmp?2, we build the performance
model based on mixed synthetic workloads. The accuracy
of these models is decreased by less than 1.1 percent, com-
pared to that of the models using only the dominant
resource, demonstrating the effectiveness of using the domi-
nant resource on the profiling process.

A Different Number of VMs for Applications. In the above
results, all of the applications are configured with 8 VMs.
However, applications have different resource require-
ments; thus, they use different numbers of VMs for their vir-
tual clusters (i.e., different VC sizes). We evaluate our
placement method for a workload composed of applications
with 4, 8, 16 VMs using the 12-node cluster with two node
types. With a given VC size, each VC configuration has four
homogeneous and two heterogeneous candidate VC config-
urations as discussed in Section 2. (Note that due to the lim-
ited size of the cluster used in our experiments, there are
only three candidate VC configurations for 16 VMs.) To use
4 or 16 VMs for an application, additional profiling runs of
the application are done using synthetic workloads, and
these runs are added to a training data set to build a model.

Each application has two blocks regardless of a used VC
size, but the assumption that each of the VMs in the same
block has the same set of co-runner(s) is relaxed. This
assumption is to restrict possible VC configurations, reduc-
ing the overhead of profiling and placement, but it needs to
be relaxed if it restricts too many VC configurations, pre-
venting a resource provider from utilizing the cluster
resource effectively. In general, heterogeneous co-runners
can exist for a block of a VC configuration, if there are two
candidate VC configurations that use the same type of phys-
ical nodes, but the numbers of used nodes differ. For exam-
ple, in the configuration of T1(1,1,1,1),T2(1,1,1,1) for 8 VMs,
a block in a T1 node or a T2 node has heterogeneous co-
runners if there are two co-runners using 4 VMs each with
the T1(1,1),T2(1,1) configuration. When a block has hetero-
geneous co-runners, we provide the average performance
metrics of the co-runners to the performance model as
inputs.

In our experiments, we use the two workloads of WL3
and WL5 in Table 6, which consist of two applications with
4 VMs each, one application with 8 VMs and one applica-
tion with 16 VMs, and use individual models for all applica-
tions in WL3 and WL5. For WL3 and WL5, our technique
shows 91.48 and 100 percent of the performance with Best,
respectively. Adding a different VC size to the model
requires more profiling of an application, but when we use
50 percent of profiling runs which include ones with intensi-
ties of three and five, the accuracy of the model is degraded
only by around 1 percent on average. With the model of
50 percent samples, the performance of WL5 becomes
96.19 percent of Best, while that of WL3 remains the same.

VM Placement with VM Live Migration.For the on-line
scheduling mode in Section 5.3, we do not change the place-
ment of existing applications to place a new application. It
is possible to migrate VMs of an existing application to
ensure better placement of applications. However, if the
VM migration overhead is too high, the efficiency of a
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cluster will be decreased. In the on-line scheduling for the
four workloads in Section 5.3, if we allow existing VMs to
be migrated whenever a placement with VM migration
increases the efficiency, the performance will be similar to
that with the batch model, showing around 7 percent higher
performance than the on-line mode of ML-G and ML-I on
average, under the assumption that the VM migration
overhead is none. To study the performance of ML-G over
various VM migration overheads, we run simulations in the
on-line mode with VM migration for WL3 (similar to
Section 5.3). We modify our simulated annealing algorithm
to consider migrating already placed VMs to improve the
efficiency. Note that for a parallel application, VMs in the
same block must be migrated together as a unit. For WL3,
the possible maximum improvement by employing VM
migrations is 10.15 percent. As the overhead to migrate an
application to a new placement increases to 2 percent of the
average runtime of all the applications used in Table 2,
the performance of WL3 cannot match that in the on-line
mode without VM migration. The VM migration overhead
must be considered when re-arranging existing VMs in an
effort to improve the performance.

6 RELATED WORK

Several techniques to schedule applications in heteroge-
neous and consolidated clusters have been studied. Paragon
is a QoS-aware scheduler that considers heterogeneous
resources and interference in a large scale datacenter for
single node applications [2]. A fair placement technique
based on game theory is proposed to perform pairwise task
collocations [30]. A QoS-aware management system called
Quasar is proposed to handle resource allocation and
assignment of incoming workloads, including distributed
applications, in a heterogeneous cluster [15]. The above
three techniques use collaborative filtering to estimate the
performance of applications. In Quasar [15], for an applica-
tion, it performs four classification techniques for estimating
the effects of scale-up, scale-out, heterogeneity and interfer-
ence separately. It also employs a greedy scheduler that
exams and selects nodes, one by one, from the highest per-
formance platform for the application to find a placement
that satisfies a QoS constraint. This greedy scheduler is well
suited for applications commonly used in large scale data-
centers such as web server, latency critical and stateful serv-
ices, and distributed analytics frameworks. Quasar mostly
considers non-virtualized systems. Mage considers the
heterogeneity across and within servers when scheduling
latency-critical and batch applications, improving the per-
formance while satisfying QoS requirements [31]. For long
running web-service applications, the impacts of microarch-
itectural heterogeneity and interference are analyzed and a
mapping technique based on a stochastic hill climbing is
presented [3].

Interference-aware management techniques that normal-
ize a different level of interference to a score have been stud-
ied [11], [12], [14]. An off-line profiling based model [12] and
a runtime profiling model [14] are presented for single node
applications. An interference modeling technique for distrib-
uted parallel applications [11] is proposed for a homoge-
neous cluster, not considering hardware heterogeneity.
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Techniques to find the best virtual cluster configuration
for distributed parallel applications have been investigated
[10], [32]. For MapReduce applications, a system to auto-
matically find a good cluster configuration regarding its
size and resource types is presented for clouds [32]. A con-
figuration guidance framework for scientific MPI-based
applications with various inputs is investigated to find
the optimal VM configuration that satisfies the cost and run-
time requirements on clouds [10]. The optimal or near-
optimal cloud configuration for big data analytics applica-
tions can be found efficiently based on Bayesian Optimiza-
tion [33]. A technique to estimate the performance of
advanced analytics such as machine learning by using a
small size input is proposed [34]. Machine learning algo-
rithms have been used to predict the performance of virtual-
ized applications [35] and HPC workloads on a single
multicore machine [28], and also predict the effects of
GPGPU hardware configurations [36].

7 CONCLUDING REMARKS

In this work, we investigated a placement technique
for distributed parallel applications in a heterogeneous
cluster, aiming to maximize the overall performance for
the benefits of service providers and users. Using the
experiments on heterogeneous clusters and large scale
simulations, we demonstrated the feasibility of a hetero-
geneity and interference aware placement approach for
distributed parallel applications, which considers various
factors to influence the performance of a distributed par-
allel application in a combined manner for maximizing
the efficiency.
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