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Direct imaging of structural disordering and
heterogeneous dynamics of fullerene molecular
liquid
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Structural rearrangements govern the various properties of disordered systems and visuali-

zation of these dynamical processes can provide critical information on structural deforma-

tion and phase transformation of the systems. However, direct imaging of individual atoms or

molecules in a disordered state is quite challenging. Here, we prepare a model molecular

system of C70 molecules on graphene and directly visualize the structural and dynamical

evolution using aberration-corrected transmission electron microscopy. E-beam irradiation

stimulates dynamics of fullerene molecules, which results in the first-order like structural

transformation from the molecular crystal to molecular liquid. The real-time tracking of

individual molecules using an automatic molecular identification process elucidates the

relaxation behavior of a stretched exponential functional form. Moreover, the directly

observed heterogeneous dynamics bear similarity to the dynamical heterogeneity in super-

cooled liquids near the glass transition. Fullerenes on graphene can serve as a new model

system, which allows investigation of molecular dynamics in disordered phases.
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D isordered states of materials, such as supercooled liquid or
glass, display peculiar non-equilibrium behavior and have
been intensively investigated for decades1–4. Various

glassy materials are widely used in industrial applications and
consumer products, and a fundamental understanding of the
disordered non-equilibrium structural phase may also facilitate
advancement in material processing and fabrication. Structural
rearrangements, which are often spatially heterogeneous, govern
the various properties of glassy systems2,4–6. Yet, direct visuali-
zation of these dynamical processes has been difficult, and
diffraction-based analysis such as structure factors or inter-
mediate scattering functions has been mainly utilized only to
yield the spatially averaged signals1,2. To complement this
issue, researchers have utilized computer simulations6,7 or other
macroscopic model systems such as granular8 or colloidal parti-
cles9–11, providing verification on spatially heterogeneous
dynamics and increasing characteristic length scales near the glass
transition.

The main experimental limitation in directly imaging atoms
and molecules in disordered states can be overcome by modifying
the sample geometry, to an atomically thin two-dimensional (2D)
glassy system. Until now, 2D silica glass12,13, 2D carbon glass14,
and Si atoms at the surface of amorphous Si15 have been suc-
cessfully visualized using transmission electron microscopy
(TEM) or scanning tunneling microscopy (STM). Although direct
imaging of atomic structure has been successfully performed in
these atomic disordered systems, in-depth observation and ana-
lysis of both structure and dynamics at the atomic or molecular
resolution are still mainly lacking. In particular, the strong
covalent bond in the previously-studied atomic glass leads to
relatively slow structural evolution and dynamics under experi-
mental conditions, limiting systematic studies on the dynamical
behavior.

Here, we prepare a C70 molecular system on graphene, and
directly visualize both the structural and dynamical evolution of
the system at molecular resolution. The relatively weak van der
Waals interaction between C70 molecules can be perturbed using
an electron-beam (e-beam) during aberration-corrected trans-
mission electron microscopy (acTEM), emulating the melting
process of the molecular crystal. Our computerized method
precisely identifies molecular positions in the disordered state,
and the pair correlation functions of molecules clearly show the
short-range liquid-like ordering. Time-dependent relaxation
behaviors of the molecular structure are studied in-depth by van
Hove correlation functions, which clearly shows the relationship
between the local structure ordering and the dynamical behavior
of the system. Real-time tracking of individual molecules also
allows us to extract the spatially heterogeneous dynamics during
the melting process. Our study demonstrates that fullerenes on
graphene can serve as a new model system for investigation of
super-cooled liquid and glass at molecular resolution.

Results
Preparation of C70 crystals on graphene. Fullerenes have rela-
tively high robustness to e-beam under TEM imaging conditions
compared to other organic molecules and can serve as model
molecules16–19. During e-beam irradiation, energetic electrons
can occasionally transfer significant momentum and energy to the
fullerene molecules via elastic collisions, generating structural
displacements and dynamical motions20. In particular, the weak
van der Waals interaction between fullerene molecules can be
easily perturbed with an e-beam, inducing strong dynamical
behavior. Indeed, researchers have previously observed an e-beam
induced molecular dynamics of C60 in one-dimensional con-
finement of carbon nanotube21. In our study, we chose C70

deposited on graphene as an ultra-thin model molecular system.
Graphene has high electrical/thermal conductivity and can fur-
ther reduce the structural damage to samples because of fast
energy transfers22–24. The atomically flat surface of graphene
facilitates the dynamical behavior of the molecular liquid under
imaging conditions, allowing systematic study of its molecular
structure and dynamics. Compared to C60 fullerene16,18,25, C70

has a slight anisotropy in its molecular shape, which may also
contribute to the more pronounced molecular movement.

We deposited C70 molecules onto a graphene membrane by
thermal evaporation to make a thin film (see methods section for
detailed information)18. Using electron diffraction, we find that
the nearest neighbour distance between molecules in the initial
C70 film was 1.07 nm without any sign of anisotropy in terms of
C70 orientation (Supplementary Fig. 1). The observed thin-film
(10 nm thick) C70 crystal structure is consistent with the high-
temperature crystal phase of a face centered cubic (fcc)16. The
film also exhibits a uniform and well-ordered structure
(Supplementary Fig. 1). For the main study on the molecular
structure and dynamics of liquid-like state, C70 samples with 3~5
nm thickness (3~5 molecular layers) were used.

Melting of C70 crystals by e-beam irradiation. A well-ordered
C70 packing structure can be perturbed with e-beam irradiation
(Fig. 1a). Figure 1b–d show TEM images of C70 film on graphene,
revealing the structural transition from ordered to disordered
configurations. E-beam irradiation drives the molecular crystal to
a more disordered state, emulating the melting process of the
molecular crystals. We note that the process is driven mainly
through decreasing the molecular ordering by the random energy
transfer of e-beam to molecules, not through actual heating of the
system13,14. This raises the possibility that the effects of e-beam
irradiation may not be the same as thermal effects. For example,
in the case of single-layer graphene, it was shown that the
population of e-beam induced defects deviates from a thermally
induced Boltzmann distribution26. Nonetheless, e-beam irradia-
tion can drive the system into high-energy states, similar to what
can be expected in a thermally activated system. Such similarities
have been studied theoretically in 2D silica27, and experimentally
observed during the transformation of various graphitic nanos-
tructures28–30.

As the C70 molecular long-range order diminishes under
prolonged e-beam irradiation, we observed a change in the local
C70 film thickness. The bare graphene surface, which can be
regarded as a pore in the C70 film, was also observed locally as
shown in Fig. 1d. The non-uniform film thickness under e-beam
irradiation mainly results from the molecular rearrangements on
the graphene surface rather than the molecular ejection because
the energy barrier for the molecular migration is much lower than
that for the molecular desorption from the surface.20,31 The
molecular rearrangements seem to be driven by the stronger
C70–C70 interactions than the C70–graphene interactions31.
Around the pores in the C70 film, the local thickness of the film
was sub-monolayer, and isolated C70 molecules with circular
shapes could be clearly observed. The observed molecular shape
(Fig. 1g) and the line intensity profile along the molecule (Fig. 1h)
were consistent with the TEM simulation data (Fig. 1e, f).

Figure 2 is a series of TEM images showing the behavior of C70

molecular crystal at the very early stage of melting, namely stage
0. TEM images of C70 initially show highly-ordered molecular
positions together with clearly visible circular molecular shape.
Later, molecular movements were induced by e-beam irradiation,
which results in local heterogeneous disordering of the molecules.
The area bounded by red lines in Fig. 2 indicates the disordered
molecular regions. We find that the disordered regions nucleated
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locally and were growing with fluctuations in their shape and
eventually merging with adjacent regions over time as shown in
Fig. 2 and Supplementary Movie 1. The nucleation and growth of
a disordered phase out of a homogeneous crystalline phase and

the observed microstructural phase coexistence with clear phase
boundaries strongly suggest that the observed phase transition
has the characteristics of a thermodynamic first-order phase
transition32,33. This observation supports that the e-beam
induced crystal-to-liquid melting in our study has similarity to
the conventional crystal-to-liquid melting induced by thermal
activation.

Identification of C70 positions and pair correlation. The well-
defined nearly circular shape of the C70 molecules, as shown by
the dark circular line at our imaged condition (defocus value at
−13 nm), can be used to efficiently identify molecular positions,
even in an area where the direct recognition of molecules is
difficult due to multiple molecular overlaps. To identify molecular
positions reliably, we devised an image processing scheme
whereby circles with a predesignated radius r were automatically
identified. To achieve this, we processed TEM images through a
two-phase Mumford–Shah (MS2) model34 and calculated the
probability density function at each image pixel, PDF(x, y), which
is a parameter indicating the probability of molecular presence at
a certain pixel location (x, y). (See Supplementary Note 1 and
Supplementary Fig. 2 for details). With a proper choice of PDF
threshold, we could assign molecular positions in two-
dimensional image space.

To validate our method, we first applied our image processing
to simulated TEM images using a model with disordered
molecules on graphene, as shown in Fig. 3a, b. The molecular
model with ~3-nm thick fullerene film was constructed by Monte
Carlo simulations, in which a reasonable three-dimensional (3D)
molecular pair correlation was used as shown in Fig. 3c. The pair
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Fig. 1 Electron beam irradiation on C70 molecular crystal. a Atomic models of C70 assembly on graphene showing the order-to-disorder structural transition
under e-beam. b–d TEM images of C70 molecular arrangement under e-beam showing increased structural disorder. Scale bar, 2 nm. e Atomic model,
f corresponding TEM simulation image, and g experimental TEM image of an isolated C70 molecule on graphene. Scale bar, 1 nm. h Intensity profile
comparison between simulation and experimental images along red and black lines in f, g
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Fig. 2 Initial melting from molecular crystal to liquid phase. A series of TEM
images showing the initial structural transition from molecular crystal
(pseudo-colored in blue) to liquid phase. The disordered molecular regions
nucleate and gradually grow out of homogeneous crystalline phase with
clear phase boundaries. Scale bar, 2 nm

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12320-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4395 | https://doi.org/10.1038/s41467-019-12320-4 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


correlation function (PCF) is given by

g2 rð Þ ¼ 1
2πrNρ

X
i;j i≠jð Þ δ r � rij

� �
ð1Þ

where rij is the distance from the ith to the jth molecules, N is the
total number of molecules, and ρ is the number density of
molecules. The identification process was verified using simulation
images with different noise levels (Supplementary Fig. 3). We
found that the process identifies the centers of molecules with
precision higher than 92% for a model with three molecular layers
and the main inaccuracy of the identification process is originated
from uncounted molecules due to significant molecular overlaps
(Supplementary Fig. 3). The main effect of the uncounted
molecules can be seen from the undercounted data points at r <
0.3 nm in 2D-projected PCF (2D g2(r)) as shown in the inset of
Fig. 3d. Nevertheless, the general features in 2D g2(r), including the
peak intensity and position, were well-captured by our identifica-
tion process. The identification process was also validated with
control images of amorphous carbon and computer-generated
random noise (Supplementary Figs. 4 and 5). The well-known
Hough transform35,36 and another scheme (simple circumference
transform) were also tested, but we find that MS2 model yielded
the most reliable identification of C70 molecules.

With the application of the MS2 model and PDF calculations,
experimentally obtained TEM images were processed (Supple-
mentary Movies 2–4) and the centers of molecules were identified,
as shown in Fig. 3e, f. Figure 3g presents PCF at different stages of
imaging (stage from 1 to 3), where the structural ordering was
diminished as the molecular crystals underwent melting under e-
beam irradiation. The PCF at its fully disordered state exhibited
peaks around r= 0.5 and 1.0 nm and converged to unity in the
range r > 2.0 nm. This observation clearly shows that the C70

molecular system hosts a liquid-like short-range ordering under e-

beam irradiation. It is noticed that the peak positions in 2D PCF
were slightly different from the expected positions (red lines)
calculated from projection image using close-packed C70 fcc
molecular assembly. In particular, the peak positions were slightly
down-shifted, showing an apparent lattice contraction compared
to the original C70 crystal due to 2D projection of 3D counter-
part37. We note that the obtained PCF in Fig. 3g was calculated
from 2D-projected TEM images, which shows some differences
from the 3D PCF as shown in Fig. 3c, d. Tomography-based TEM
imaging38 is potentially available to obtain a static molecular 3D
PCF, but it is currently challenging to apply the technique to our
dynamic molecular systems due to possible e-beam induced
motions during extended experimental imaging time.

Time-dependent correlation function of molecular structures.
The detailed dynamical behaviors of C70 molecules can be studied
using time-dependent correlation functions. Van Hove correla-
tion functions (vHCF) were obtained using

G r; tð Þ ¼ 1
N

XN

i;j
δðrþ rj 0ð Þ � ri tð ÞÞ

D E
ð2Þ

Figure 4a shows g(r,t)=G(r,t)/ρ at the state where the
disordered state was developed from the C70 crystal (stage 2).
We note that the proper calculation of vHCF involves the overall
drift correction of time-series TEM images, which is described in
detail in Supplementary Fig. 6. The peaks at r~0.5 nm and r~1.0
nm show rapid decaying behaviors and converge to unity (Fig. 4b).
The dynamical structural relaxation characteristics can be further
investigated by analyzing the shape of the relaxation function.
Figure 4c shows the decaying vHCF plots of the first peak (at
r~0.5 nm) at the different stages of melting. The relaxation

behavior can be fitted using g tð Þ ¼ 1þ A � exp �ðt=τÞβ
h i

with
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Fig. 3 Identification of C70 positions in the disordered molecular structure. a Atomic model of disordered C70 structure on graphene. b Corresponding TEM
simulation image of the model with identified center position overlay (red dots). Blue dots are doubly-counted positions. c 3D pair correlation function
(PCF) from the disordered C70 molecular model. d 2D-projected PCF from the molecular model and identified positions. The inset shows the PCF at 0≤
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fitting parameters τ and β. The fitting functional form does a good
job of capturing the experimental relaxation, resulting in
approximately τ~10 s and β~0.6. The observed non-exponential
decaying function with β < 1 (stretched exponential decaying) is a
strong indicator of the heterogeneous dynamical behavior of the
system3–5,39.

The observed dynamical relaxation characteristics exhibited
correlations with local structure ordering. As shown in Fig. 4d,
the relaxation time τ becomes smaller as the local structural order
parameter, PCF 1st peak, diminishes. In situations where the
structural order parameter is high, the relaxation dynamics can be
suppressed due to the higher energy barrier originated from the
larger molecular coordination number, which can be obtained
from

R r¼1:1nm
0 g2 rð Þ 2πrρð Þdr. On the other hand, as the

molecular structure undergoes disordering, the energy barrier
for molecular movement can be lowered due to the smaller
molecular coordination number. This result implies that the
relaxation process is highly sensitive to local structural ordering
and the observed heterogeneous dynamical behaviors can be
originated from the heterogeneous structural ordering.

Spatially resolved heterogeneous dynamics in C70 liquid. The
heterogeneous dynamical molecular behaviors can be further
directly accessed by visualization of molecular movement during
melting. With the ability to track dynamics at molecular resolu-
tion, we visualized the 2D diffusional behaviors of C70 molecules.
Figure 5a shows 2D molecular trajectories of C70 molecules at a
relatively early stage of melting (stage 1), demonstrating that the
structural and dynamical behaviors of molecular disordering
display spatially heterogeneous process. The central area of

Fig. 5a shows a more ordered structure together with suppressed
dynamical behavior, whereas the non-central area shows a more
disordered structure with enhanced molecular dynamics. The
positions of molecules with pronounced dynamics also display
this heterogeneity, as shown in Supplementary Fig. 7. The
zoomed-in molecular trajectories (Fig. 5b) show that the mole-
cular diffusion is associated mainly with wiggling movements and
sporadic large jumps. This non-trivial behavior is reminiscent of
the cage rearrangement observed in model colloidal systems near
the glass transition10,11.

Detailed diffusional behaviors of molecules can be examined
using the mean-squared displacement of molecules defined by
r2 tð Þh i ¼ 1

N

PN
i¼1 ri tð Þ � ri 0ð Þj j2, as shown in Fig. 5c. The mean-

squared displacement at two different stages during the melting
process clearly shows that the molecular diffusion became more
pronounced at the later stage of observation. This is consistent
with our analysis and conclusion from vHCF in Fig. 4.
Interestingly, in Fig. 5c, the slope of the plots (red dashed line)
begins with a lower value and then approaches the slope of the
blue lines over time. The blue dashed lines indicate the diffusional
behavior obtained from free diffusional form6. The time scale of
the transition from sub-free to free diffusional behavior is ~10 s,
which is consistent with the relaxation time scale observed in
Fig. 4. Heterogeneous dynamical behavior can also be studied
using the non-Gaussian parameter, α2 ¼ r4 tð Þh i= 3r2 tð Þh i � 1;
which quantifies deviations from a Gaussian distribution5,10,11.
Calculated α2 at the stage 1 shows a peak value of around 2 at
t~10 s as shown in Fig. 5d. The similar α2 feature showing a peak
at the characteristic relaxation time scale was previously observed
for the alpha-relaxation of various glass systems5. This supports
that the structural rearrangements during melting display
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heterogeneous dynamics, and our molecular system bears some
similarity to the dynamics observed in supercooled liquids near
the glass transition3,6. We note that the effect of overall drift was
eliminated by the drift correction during the post-imaging
process as shown in Supplementary Fig. 6.

Discussion
In conclusion, we observed an e-beam induced first-order tran-
sition-like crystal melting of C70 molecular system and analysed
its molecular dynamics with single-molecule sensitivity. The pair
correlations for C70 molecules were calculated using an auto-
mated molecular position identification process. The spatially
heterogeneous dynamical behavior of these molecules bore the
similarity to the dynamical heterogeneity observed in supercooled
liquids near the glass transition. Considering the possibility of
using various molecules with different anisotropy (C60, C72, and
C82) and modifying interactions between molecules through
surface/internal functionalization (C60F48 and M@C82)16, full-
erenes on graphene can serve as a new model system for inves-
tigation of molecular glass and supercooled liquid, providing
unprecedented real-space imaging of dynamical heterogeneity.
Future work combining the e-beam irradiation with in situ
heating will make it possible to reveal the details on the ther-
modynamic equilibrium and non-equilibrium properties of full-
erene model systems.

Methods
Sample preparation. Graphene was synthesized using chemical vapor deposition
(CVD)40. Twenty-five micrometer-thick copper foil was used as the synthesis
substrate. CVD graphene was transferred to Quantifoil holey carbon grids via
direct transfer18. C70 films were deposited onto graphene TEM grids by thermal
evaporation. Before the thermal evaporation process, TEM grids were pre-annealed
in the air at 200 °C for 30 min to minimize surface adsorbate on graphene. The C70

films with thicknesses ranging from 0.5 to 10 nm were deposited at the deposition
rate of 0.05 Å s−1 under a vacuum pressure of 2 × 10−6 Torr. The graphene sub-
strate was held at 110 °C during the deposition.

TEM imaging and simulation. TEM imaging was performed using a FEI Titan
equipped with an image aberration corrector operated at 80 kV and a JEOL ARM
200 F equipped with image and probe aberration correctors operated at 80 kV.
Selected area electron diffraction was performed with a FEI Tecnai. The electron
dose during TEM imaging was ~2 × 104 e nm−2 s−1. TEM videos were recorded
using the CamStudio program with a temporal resolution of around 0.2 s per
frame. TEM image simulations were performed using MacTempas software with
experimental imaging conditions. The simulation images were obtained at a
defocus value of −13 nm.

TEM image analysis. Molecular position identification was performed using the
two-phase Mumford–Shah (MS2) model and the calculation of the probability
density function (PDF) for molecular presence at each pixel. First, the MS2 model
calculates the support function of an experimental TEM image. Based on the dark
circular shape of fullerenes on the image, the annulus support with a given radius
was applied to each image pixel. Second, the PDF was computed using the cal-
culated support function and the chosen reference molecule, which described the
probable molecular positions. To find positions that otherwise could be missed due
to the aggregation of molecules, bright artificial molecules were inserted to the
positions obtained from PDF, after which the PDF was re-calculated. Double-
counted positions were determined if the PDF value was more than 98% of the
PDF maximum. Drift correction of time-series TEM images was performed using a
custom ImageJ macro. To quantify overall drift for each frame, tracking of
molecular positions was executed for all frames, and the average displacement of
the tracked molecules at a given frame was calculated along both the x and y
directions. The overall drift was compensated using the calculated average dis-
placement for a given frame. These processes are described in greater detail in
the Supplementary Information section.

Data availability
The authors declare that the data supporting the findings of this study are available
within the Supplementary Information files and from the corresponding authors upon
reasonable request.

Code availability
The codes used for data are available from the corresponding authors on reasonable
request.
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