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Cation-swapped homogeneous nanoparticles in
perovskite oxides for high power density
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Exsolution has been intensively studied in the fields of energy conversion and storage as a

method for the preparation of catalytically active and durable metal nanoparticles. Under

typical conditions, however, only a limited number of nanoparticles can be exsolved from the

host oxides. Herein, we report the preparation of catalytic nanoparticles by selective exso-

lution through topotactic ion exchange, where deposited Fe guest cations can be exchanged

with Co host cations in PrBaMn1.7Co0.3O5+δ. Interestingly, this phenomenon spontaneously

yields the host PrBaMn1.7Fe0.3O5+δ, liberating all the Co cations from the host owing to the

favorable incorporation energy of Fe into the lattice of the parent host (ΔEincorporation =−0.41

eV) and the cation exchange energy (ΔEexchange = −0.34 eV). Remarkably, the increase in

the number of exsolved nanoparticles leads to their improved catalytic activity as a solid

oxide fuel cell electrode and in the dry reforming of methane.
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Exsolution has been recently explored as a method for the
preparation of nanoparticles with superior catalytic activity
and durability for energy conversion and storage. Specifi-

cally, exsolution refers to the formation of metal nanoparticles on
the surface of a metal oxide via the release and anchoring of
cations from the host lattice to the oxide surface in a reducing
atmosphere, producing catalysts with enhanced lifetime
compared to traditional deposition techniques (e.g., chemical
vapor deposition or wet impregnation) by avoiding particle
agglomeration1,2.

Despite its benefits, the exsolution process presents two major
challenges. Firstly, a significant amount of exsolved metal can
remain embedded in the host bulk due to the limited diffusion
rate of metal cations3,4. Secondly, exsolution can cause structural
instability in the host material due to excessive loss of cations5. To
overcome these challenges, several factors governing the degree of
exsolution, such as the nature of the host lattice and environ-
mental conditions6, have been extensively investigated in simple
perovskite7,8 (ABO3) or layered perovskite9–13 (AA′B2O5). For
example, A-site deficiency (A/B < 1) in perovskite oxide (ABO3)
has been actively researched recently in terms of cation stoi-
chiometry/non-stoichiometry manipulation7,14–16.

Meanwhile, topotactic ion exchange is an interesting soft
chemical method that has been applied to numerous perovskite-
related compounds for cation replacement17,18. Therefore, it
could be envisaged as a solution with wide applicability for the
complete exsolution of metal cations without leaving cation
defects in the host lattice, thereby maintaining the overall struc-
tural features of the parent metal oxide17.

Herein, we report the use of topotactic ion exchange to
overcome the problems associated with common exsolution
techniques. When a stoichiometric layered perovskite oxide (AA′
B2−xCxO5+δ) is used, the exsolution of y moles of C metal from
the B site would be accompanied by the formation of the corre-
sponding amount of B-site vacancies (Schottky-type defect)
(Eq. 1). In contrast, in the topochemical ion exchange concept,
such layered perovskite oxide can yield x moles of exsolved C
metal by the ion exchange with x moles of the guest cation G
(Eq. 2). Overall, the topochemical ion exchange produces the
layered perovskite without B-site vacancies, thereby preserving
the atomic connectivity of the B–O–B network for an efficient
oxygen transport and electron conduction.
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We selected the layered perovskite PrBaMn1.7Co0.3O5+δ

(PBMCo) as the host and Fe (Fe3+/Fe4+) as the guest cation. A
previous study revealed that, in layered perovskite, the Co cation
has a higher tendency to be exsolved toward the surface than Fe,
mainly due to the higher co-segregation energy of Co (−0.55 eV)
compared to that of Fe (−0.15 eV)9. Therefore, when the Fe guest
cation is externally introduced into the host material, the initial
host PBMCo can be converted to PrBaMn1.7Fe0.3O5+δ (PBMFe)
through topotactic cation exchange. This simple synthetic

approach not only can readily exsolve most of the cations from
the bulk lattice but also can produce new compounds with
multiple functionalities by exsolving nanoparticles without leav-
ing cation defects. Moreover, we illustrate that the as-exsolved
particles exhibit high catalytic activities, which are verified by
solid oxide fuel cell anode test and dry reforming reaction of
methane.

Results
System for the topotactic ion exchange/exsolution. In this work,
a layered stoichiometric perovskite, PrBaMn1.7Co0.3O5+δ, was
selected as the ion exchange host for the preferential exsolution of
Co to exemplify the topotactic manipulation. We selected Co as
the exsolving cation since Co in the B sites has the highest co-
segregation energy toward exsolution among various transition
metals (Mn, Co, Ni, and Fe), whereas Fe was chosen as the guest
material with the lowest co-segregation energy9. The deposition
of guest cation was done by infiltrating a nitrate solution having
different weight percentages of Fe (0, 3, 7, and 12 wt% with
respect to the host material) on Pr0.5Ba0.5Mn0.85Co0.15O3−δ. The
amount of infiltrated Fe was also calculated in a mole percentage
as shown in Supplementary Table 1. After the infiltration,
Pr0.5Ba0.5Mn0.85Co0.15O3−δ deposited with Fe oxide was annealed
in humified hydrogen at 850 °C to exsolve nanoparticles along
with phase transition from simple perovskite to layered per-
ovskite structure. Table 1 summarizes the different abbreviations
of the samples.

Ion exchange and density functional theory calculations. In the
process of Co exsolution under a reducing atmosphere, the Co
cation in the host material PBMCo undergoes topotactic ion
exchange with the deposited Fe due to the difference of co-
segregation energy between Co and Fe. Thus, Co tends to be
exsolved to the surface while Fe remains in the bulk in the
PrBaMn1.7T0.3O5+δ system (T=Mn, Ni, Co, or Fe)9. In a
stoichiometric layered perovskite, the exsolution of transition
metal cation was observed along with the phase transition
under a reducing atmosphere (R1 in Fig. 1a), leaving B-site
vacancies (Schottky-type defect). Under typical conditions, only
a limited fraction of B-site transition metal can be exsolved. In a
stoichiometric layered perovskite of PrBaMn1.7Ni0.3O5+δ com-
position, only 58% of Ni can migrate to the surface, leaving
many B-site vacancies9, with the concomitant decrease in both

Table 1 Nomenclature for the compounds based on the Fe-
infiltrated PBMCo system

Compound Abbreviations

PrBaMn1.7Co0.3O5+δ PBMCo
PrBaMn1.7Co0.3O5+δ+ 3wt% infiltration of Fe PBMCo-3-Fe
PrBaMn1.7Co0.3O5+δ+ 7wt% infiltration of Fe PBMCo-7-Fe
PrBaMn1.7Co0.3O5+δ+ 12wt% infiltration of Fe PBMCo-12-Fe
PrBaMn1.7Co0.3O5+δ+ 15wt% infiltration of Fe PBMCo-15-Fe
PrBaMn1.7Co0.3O5+δ+ 12wt% infiltration of Co–Fe PBMCo-12-CoFe
PrBaMn2O5+δ PBM
PrBaMn2O5+δ+ 12wt% infiltration of Fe PBM-12-Fe
PrBaMn2O5+δ+ 12wt% infiltration of Co PBM-12-Co
PrBaMn1.7Fe0.3O5+δ PBMFe
PrBaMn1.7Fe0.3O5+δ+ 12wt% infiltration of Co–Fe PBMFe-12-CoFe
PrBa0.5Sr0.5Co1.5Fe0.5O5+δ PBSCF
Ce0.9Gd0.1O2−δ GDC
La0.4Ce0.6O2−δ LDC
La0.9Sr0.1Ga0.8Mg0.2O3−δ LSGM

wt%: weight percent to anode
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the oxygen ion conduction and electron conduction paths. On
the contrary, for the topotactic ion exchange/exsolution method
(R2 in Fig. 1a), the guest cation is deposited on the patent
stoichiometric layered perovskite material followed by reduc-
tion. During the exsolution process, the topotactic ion exchange
occurs between the lattice Co and the deposited Fe. In parallel,

all the Co cations from the B sites are exsolved without the
formation of B-site vacancies. The filling of the B sites even-
tually leads to improved ionic and electrical conduction paths.
In the topotactic ion exchange process, Fe dissolves into the
underlying perovskite lattice due to its low co-segregation
energy compared to that of other transition metals.

Step2. Fe exchange with Co
and alloy formation
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Fig. 1 Schematic of exsolution process and density functional theory calculations. a Exsolution process with and without topotactic ion exchange.
b Topotactic ion exchange energetics for the mechanism of particle exsolution via Fe infiltration on the PBMCo surface. c The unfavorable incorporation
energy of infiltrated Fe with Mn of the top surface. d Calculated energetics for the Co–Fex exchange depending on arbitrary Fe concentration
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To simulate the topotactic ion exchange process between B-site
cations, DFT calculation was performed. We assumed that the
process occurs through two major stages, i.e. (1) incorporation of
the infiltrated Fe into the lattice and (2) exchange between the
incorporated Fe and the host Co, and the energy at each stage was
investigated. This mechanism of cation exchange in layered
perovskites can be expressed in point defect (Schottky-type
defect) reactions as follows:

Exsolution without cation exchange,

Co ´
Co þ O ´

O $ CoOþ V��
O þ V′′

Co; ð3Þ

CoO $ Coðmetallic exsolutionÞ þ
1
2
O2: ð4Þ

Exsolution by topotactic ion exchange,

Co ´
Co þO ´

O þ FeOðinfiltratedÞ $ CoOðexsolvedÞ þ V��
O þ Fe ´Co; ð5Þ

CoO $ Coðmetallic exsolutionÞ þ
1
2
O2: ð6Þ

where Co ´
Co denotes the Co in the Co site with net charge

zero, O ´
O denotes oxygen in the oxygen site with net charge zero,

V��
O denotes the oxygen ion vacancy with the net charge of +2,

V′′
Co denotes the cation vacancy in the Co site with the net charge

of −2, Fe ´Co denotes the incorporated Fe in the Co site with net
charge zero, and FeO/CoO denotes the Fe/Co oxide, respectively.

Once Fe is deposited on the host PBMCo, Fe incorporates into
the near surface of PBMCo through the exchange with the Co
cations on the B sites. Since both the exsolved Co and host Mn
can coexist at the near surface of PBMCo, we compared two
possible exchange pathways, Fe↔ Co and Fe↔Mn, on the B
cation layer of the surface. Our results show that Fe↔ Co (−0.41
eV) is thermodynamically more favored than Fe↔Mn (0.22 eV)
(Fig. 1b, c). Thus, the incorporation of Fe occurs through its
exchange with Co. After the incorporation, further exchange
between the incorporated Fe and the bulk Co is thermodynami-
cally favorable, with an exchange energy of −0.34 eV. Therefore,
it can be concluded that Co exsolution is facilitated by the
incorporation of Fe.

Next, the Co–Fe exchange energy was calculated as a function
of the incorporated Fe concentration in an arbitrary unit (Fig. 1d).
As the arbitrary concentration of the incorporated Fe increases up
to the specific concentration, the Co–Fe exchange is thermo-
dynamically favored. This also supports that the Fe incorporation
into the host PBMCo possibly accelerates Co exsolution. The
Gibbs energy of aggregation (ΔGaggr) of Co–Ov–Fe at the surface
(surface alloy formation) is 0.01 eV, implying that the aggregation
of Co and Fe requires only little energy on the surface. This result
is consistent with that of the TEM investigation that will be
discussed later, which evidences the formation of a Co–Fe alloy.
In addition, the lower oxygen vacancy formation energy at the
surface of PBMCo-12-Fe (2.52 eV) compared to that of the host
PBM (2.97 eV) would promote further reduction of Co–Fe
aggregation to form Co–Fe alloy nanoparticles.

Correlation between exsolved particles and infiltration. To
provide evidence of the occurrence of topotactic ion exchange, we
varied the amount of infiltrated Fe precursor and investigated the
correlation between the amount of Fe deposition and the popu-
lation of exsolved nanoparticles through scanning electron
microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis.
Figure 2a shows the schematics of the experimental process. The
SEM images of PBMCo, PBMCo-3-Fe, PBMCo-7-Fe, and

PBMCo-12-Fe are shown in Fig. 2b–e. The micrographs illustrate
that spherical exsolved nanoparticles of 20–50 nm are evenly
distributed on the surface of the parent material. Interestingly, as
the amount of infiltrated Fe precursor increases from 0 to 12 wt%,
more spherical particles seem to be exsolved to the surface of the
layered perovskite. To provide a more quantitative correlation
between the population of particles and the amount of deposited
Fe, the exsolved nanoparticles in a specific area were numbered
by an image analysis tool (Image J software). As seen in Fig. 2f,
the results demonstrate that the amount of deposited Fe oxides
promotes exsolution, particularly a significant increase up to 12
wt% of infiltrated Fe oxides. With the amount of 15 wt% infil-
tration, number of the exsolved nanoparticles in a specific area is
not deviated from that of 12 wt% (counted as 98 particles shown
in Supplementary Fig. 1a), indicating that the promotion of
exsolution is saturated at the certain amount of the deposition.
These trends are in good agreement with the BET analysis of the
specific surface area of the material, as shown in the right axis of
Fig. 2f, Supplementary Figs. 1 and 2. This can be explained by the
fact that the specific surface area is affected only by the exsolved
nanoparticles, not by the amount of Fe deposition. To validate
this statement, we deposited Fe on Pr0.5Ba0.5MnO3−δ and
annealed it in H2 to form a PBM with layered perovskite struc-
ture. The samples with 12 wt% Fe (PBM-12-Fe) and without Fe
(PBM) show a specific surface area of 1.16 and 1.17 m2 g−1,
respectively (Supplementary Fig. 1b), and the surface morphology
of PBM-12-Fe (Supplementary Fig. 1c) appears to be smooth,
indicating that the contribution to the specific surface area by
infiltration of 12 wt% Fe on the layered perovskite support is
negligible.

Examination of exsolved particles and parent oxide. To inves-
tigate the crystalline structure and composition of the layered
perovskite with exsolved nanoparticles, we examined the samples
using transmission electron microscopy (TEM). As shown in the
high-angle annular dark field (HAADF) scanning TEM image of
PBMCo-12-Fe (Fig. 3a), nanoparticles having about 30 nm dia-
meter were exsolved from the parent material. In addition, the
PBMCo-12-Fe sample was subjected to energy dispersive spec-
troscopy (EDS) (Fig. 3b), showing that the exsolved nanoparticles
consist of a Co–Fe alloy, and the parent layered perovskite con-
tains Pr, Ba, Mn, and Fe, which is consistent with the EDS
spectrum results (Fig. 3c, d). This disappearance of Co in the
lattice is due to the topotactic ion exchange between the lattice Co
and deposited Fe, clearly showing that Co and Fe switch their
lattice positions. To gain further insights on the crystal lattice and
the topotactic ion exchange, we performed atomic-scale scanning
TEM analysis. The A-site ordering was observed by a small
additional spot in the fast-Fourier transformed (FFT) pattern
indexed to (001) of the tetragonal structure (Fig. 3e). Further-
more, atomic-scale EDS mapping was conducted in the parent
oxide (orange rectangle in Fig. 3e) to investigate the A-site cation
ordering and the positions of Co and Fe (Fig. 3f). It was found
that the atomic positions of Pr, Ba, and Mn remained unaltered,
while some Fe was observed in the position of Mn, which implies
that Fe entered the B sites of PBMCo. Meanwhile, Co signals were
not clearly observed in the EDS mapping, which demonstrates
that most of the Co was exsolved to the surface due to the
topotactic ion exchange with Fe.

Moreover, we examined XRD peaks around 22° to determine
the change in lattice as exchanging cations (Supplementary
Fig. 3a). The peaks around 22° corresponding to (200) are 22.79°
and 22.37° for PBMCo and PBMCo-12-Fe, respectively. The peak
shift to the left indicates that the lattice expansion occur due to
the cation exchange of smaller Co ions (Co2+ (r= 0.745Å) or
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Co3+ (r= 0.545Å)) and larger Fe ions (Fe2+ (r= 0.780Å) or
Fe3+ (r= 0.645Å))19,20. We also measured high-resolution TEM
to confirm the lattice constants before and after the exchange. As
shown in the HR TEM images, the lattice spaces between (001)
planes of before (Supplementary Fig. 3b) and after (Supplemen-
tary Fig. 3c) exchange are identified as 0.803 and 0.815 nm by
FFT pattern, respectively. Therefore, it can be concluded that the
lattice constant of the layered perovskite somewhat increases after
the exchange between Co and Fe.

X-ray diffraction and X-ray photoelectron spectroscopy ana-
lysis. The perovskite oxides were analyzed by X-ray diffraction
before and after reduction. From the XRD diffraction pattern
(Supplementary Fig. 4), it can be deduced that the host material
samples sintered at 950 °C in air for 4 h exhibit simple perovskite
structures of mixed cubic and hexagonal phases without sec-
ondary phase. The diffraction patterns of the PBMCo, PBMCo-3-
Fe, PBMCo-7-Fe, and PBMCo-12-Fe samples are shown in
Supplementary Fig. 5. Under a reducing atmosphere, all the
samples experience phase transition from simple perovskite to
layered perovskite along with the formation of exsolved nano-
particles on the surface of host materials. For PBMCo, the peak
for exsolved Co metal is observed at 2θ= 44.26° (JCPDS card#15-
0806). As the amount of deposited Fe increases, the peak for
metal is lower-angle shifted (44.26° for PBMCo and PBMCo-3-Fe
and 44.17° for PBMCo-7-Fe and PBMCo-12-Fe, respectively) due
to the formation of the Co–Fe alloy, which originates from
the dissolution of Fe in the Co lattice21. The diffraction pattern of

PBMCo-12-Fe exhibits several additional peaks that are absent
in those of the other perovskite oxides. This can be ascribed to the
formation of PrBaMn1.7Co0.3−yFeyO5+δ from Pr0.5Ba0.5Mn0.85-
Co0.15O3−δ as a result of the swapping between Co and Fe cations
according to Eq. (7). When the B sites of Co are fully substituted
by the Fe cations, the parent material is transformed into
PrBaMn1.7Fe0.3O5+δ, whose characteristic peak splitting is easily
distinguishable from that of PrBaMn1.7Co0.3O5+δ

9. These results
clearly demonstrate the topotactic ion exchange between the host
cation Co and the deposited Fe that leads to the selective exso-
lution of Co without any change in the crystal structure except
the exchange of B-site cations.

Pr0:5Ba0:5Mn0:85Co0:15O3�δ þ Fe2O3 depositionð Þ
reducing

�!
PrBaMn1:7Co0:3�yFeyO5þδ þ yCo� Fe

exsolution and formation of alloyð Þ
: ð7Þ

X-ray photoelectron spectroscopy (XPS) was performed to
determine the oxidation states of B-site dopants in PBMCo-3-Fe,
PBMCo-7-Fe, and PBMCo-12-Fe. As shown in Supplementary
Fig. 6, the binding energy peaks of Fe ions in the bulk for Fe 2p3/2
and Fe 2p1/2 consist of 710 and 723.7 eV corresponding to Fe2+,
712.5 and 725.5 eV corresponding to Fe3+, respectively. For the
all samples, Fe is present as the form of mixed Fe2+ and Fe3+. In
the case of Co, Co metal is predominant and Co2+ and Co3+

coexist in a similar ratio.
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Catalytic activity. To investigate the applicability of the present
topotactic ion exchange/exsolution method, the electrochemical
performance of fuel cells based on PBMCo-x-Fe as the anode was
evaluated and compared with that of a PBM anode. The fuel cells
with a configuration of PBMCo-x-Fe | LDC | LSGM | PBSCF-
GDC were tested in humidified H2 (with 3% H2O) as the fuel and
ambient air as the oxidant. The maximum power densities were
0.826, 0.853, 0.938, and 1.834W cm−2 for PBMCo, PBMCo-3-Fe,
PBMCo-7-Fe, and PBMCo-12-Fe, respectively, at 800 °C in
humidified H2 (Fig. 4a). The number of exsolved particles was
found to increase with the amount of Fe infiltration due to the
topotactic ion exchange, which resulted in a tremendous
enhancement of the electrochemical performance of the SOFC
anode. In contrast, the samples without metal exsolution, i.e., the
parent PBM anodes with deposited Co and Fe catalyst (Supple-
mentary Fig. 7), showed no increment in the electrochemical
performance, suggesting that the exsolved particles formed by
topotactic ion exchange play a key role in the catalytic activity.

To clarify the effect of the cation exchange on the
electrochemical performance, Co–Fe-infiltrated PBMFe and
Co–Fe-infiltrated PBMCo were evaluated (Supplementary Fig. 8).
PBMFe was used for comparative purposes to simulate the parent

material after the cation exchange, since the bulk of PBMCo-12-
Fe is considered to alter to PBMFe through the cation exchange.
The maximum power density values of PBMFe-12-CoFe and
PBMCo-12-CoFe were determined to be 0.743 and 0.962W
cm−2, respectively, revealing that the catalytic activity of the
Co–Fe alloy particles infiltrated on the parent PBMFe and
PBMCo without topotactic cation exchange is not as high as that
of the cation-exchanged PBMCo-12-Fe. This can be attributed to
the difference in surface morphology between samples. As
displayed in the HAADF scanning TEM image of the PBMFe-
12-CoFe sample (Supplementary Fig. 9), the infiltrated Co–Fe
alloy particles exist irregularly as coarsened particles with a size of
50–300 nm. In contrast, exsolved nanoparticles of 20–50 nm are
uniformly distributed on the surface of the PBMCo-12-Fe sample
(Fig. 2e). These results are in line with previous findings that
present agglomeration and coarsening of catalytic nanoparticles
by infiltration as well-known concerns22.

The non-ohmic resistances for PBMCo-3-Fe, PBMCo-7-Fe,
and PBMCo-12-Fe were 0.330, 0.237, and 0.071Ω cm2, respec-
tively, at 800 °C in H2 (with 3% H2O) (Supplementary Fig. 10),
which are consistent with the trends observed for the maximum
power density. In particular, the single cell performance of
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PBMCo-12-Fe demonstrates superior catalytic activity among
recently developed ceramic anodes using exsolution11,12,23–26

(Fig. 4b). Additionally, to measure the stability of the particles
obtained via the topotactic ion exchange/exsolution method, we
compared the SEM images of the PBMCo-12-Fe sample after
prolonged exposure to 3% humidified hydrogen. As can be seen
in Supplementary Fig. 11, the exsolved particles maintain their
morphologies without undergoing agglomeration even after
exposure at 800 °C in humidified H2 over 100 h.

The catalytic activity of the samples for the dry reforming of
methane (DRM) was also assessed using a quartz tube reactor,
since Co-based species are known to be excellent catalysts for
DRM27. At 900 °C, the CO2 conversion using the PBMCo-12-Fe
sample reached 30%, which is almost two times higher than that
of PBMCo and four times higher than that of PBM, as shown in
Fig. 4c. The higher conversion of CO2 for PBMCo-12-Fe strongly
supports its excellent capability as a DRM catalyst with a long-
term stability over 160 h (Fig. 4d). As shown in Supplementary
Fig. 12, Co–Fe alloy has an overall metallic phase after DRM
reactions and some FeOx are formed on the surface of Co–Fe
alloy due to the difference in redox property of Co and Fe1. The
reactions involving CO2 oxidation and CH4 reduction during
DRM are given by the following steps (Eqs. (8–10)) according to a
Mars-van Krevelen (MvK) mechanism28. That is, Co–Fe alloy
particles undergo de-alloying/re-alloying process during DRM
and, consequently, FeO on the surface reacts with carbon
deposited on Co to form CO (Eq. (10)).

CH4 ! CCo þ 2H2; ð8Þ

Feþ xCO2 $ FeOx þ xCO; ð9Þ

FeOx þ CCo ! xCOþ Coþ Fe: ð10Þ

Discussion
In summary, we have demonstrated the first example of a topo-
tactic ion exchange/exsolution method that offers extensive
control over the structure and properties of the obtained nano-
particles. The effectiveness of this approach emphasizes the utility
of the topotactic ion exchange manipulation for the selective
exsolution of catalytic nanoparticles in oxide materials. The
topotactic cation exchange between Co and Fe can occur spon-
taneously due to the favorable incorporation energy (−0.41 eV)
and exchange energy (−0.34 eV) for the deposition of the guest
material Fe on the host material PBMCo, consequently resulting
in the transformation of PBMCo into PBMFe, according to the
results of DFT calculation. The maximum power density of an
electrolyte-supported cell with a PBMCo-12-Fe anode reaches
1.834W cm−2 in humidified H2 at 800 °C, achieving excellent
electrochemical performance compared to other recently devel-
oped ceramic anodes. In addition, the catalyst activity in DRM is
improved about four times and two times compared to PBM and
PBMCo, respectively, at 900 °C. This approach based on topo-
tactic cation exchange provides a powerful methodology for
controlling the properties of exsolution by actively customizing
the material through external cation intercalation, which goes
beyond the existing methods that depend on the characteristics of
the material itself.

Methods
Synthesis of parent materials. Pr0.5Ba0.5Mn0.85Co0.15O3−δ, Pr0.5Ba0.5Mn0.85-
Fe0.15O3−δ, and Pr0.5Ba0.5MnO3−δ were prepared by the Pechini sol–gel
synthesis method. The required amounts for stoichiometry of Pr(NO3)3·6H2O
(Aldrich, 99.9%, metal basis), Ba(NO3)2 (Aldrich, 99+%), Mn(NO3)2·4H2O
(Aldrich, 98%), Fe(NO3)3·9H2O (Aldrich, 98+%), and Co(NO3)2·6H2O
(Aldrich, 98+%) were dissolved in distilled water. After complete dissolution,
proper amounts of ethylene glycol and citric acid as complexing agents were
added to the solution and combustion process on heating plate is followed to
make fine powders. These powders were calcined at 600 °C for 4 h to eliminate
organic residue. The chemical composition of the synthesized powders and their
abbreviations are given in Table 1.
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Fabrication of fuel cells. Commercial electrolyte powders, La0.9Sr0.1Ga0.8Mg0.2O3−δ,
(LSGM, 99.9% Kceracell) was pressed into pellet of 0.9 g and sintered at 1475 °C.
After sintering, pellet was polished to about 250 μm. A buffer layer, La0.4Ce0.6O2−δ

(LDC) was prepared by ball milling stoichiometric amounts of La2O3 and CeO2

(Sigma, 99.99%) in ethanol and then calcined at 1000 °C for 6 h. LDC is applied
between anode and electrolyte to prevent ionic inter-diffusion. Anode powder
PBMCo was mixed with an organic binder (Heraeus V006) (1:2 weight ratio) to make
slurry ink. Cathode powders composed of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-
Ce0.9Gd0.1O2−δ (at a weight ratio of 60:40) were mixed with an organic binder (1:1.2
weight ratio) for a cathode slurry ink as described elsewhere19,29. These electrode inks
were applied on the LSGM electrolyte pellet by screen printing method to produce a
configuration of PBMCo | LDC | LSGM | PBSCF-GDC, which was followed by
sintering at 950 °C in air for 4 h. The Fe precursor solution was infiltrated on PBMCo
after sintering. The porous electrodes had an active area of 0.36 cm2 and thickness
about 20 μm. For the electrochemical tests, Ag wires were fixed to both electrodes
using Ag paste as current collectors and the cell was sealed on an alumina tube using
a ceramic adhesive (Ceramabond 552, Aremco). The entire cell was placed inside a
furnace and heated to the desired temperature. I–V polarization curves were mea-
sured using a BioLogic Potentiostat.

Infiltration. A deposition on sample was fulfilled by an infiltration procedure.
Precursor solution for infiltration of Fe and Co–Fe were prepared in 0.7 M by
dissolving an appropriate amount Fe(NO3)3·9H2O (Aldrich, 98+%), Co
(NO3)2·6H2O (Aldrich, 98+%), and citric acid into distilled water. Precursor
solutions were infiltrated into porous PBMCo with various weight percent to
parent material (3, 7, and 12wt%) and then calcined in air at 450 °C for 4 h. This
infiltration procedure was repeated to achieve the targeted weight percent.

Exsolution characterization. To compare the exsolution phenomenon with
varying the amount of the deposited Fe on PBMCo, pre-calcined PBMCo was fired
at 950 °C in air for 4 h. The sintered PBMCo was infiltrated with Fe precursor
solution and reduced at 850 °C in H2 atmosphere (with 3% H2O) for 4 h.

The crystal structures of the samples were identified by an XRD (Bruker, D8
Advance, Cu Ka radiation, 40 kV, 40 mA). The morphologies of materials were
investigated using SEM (FEI, Nova Nano 230 FE-SEM). TEM images were
obtained with a FEI Titan (3) G2 60-300 with an imaging-forming Cs corrector at
an accelerating voltage of 80 kV. N2 adsorption and desorption isotherms
measurement was carried out at −196 °C (BELSORP-Mini II, BEL Co.) to evaluate
the pore structure and specific surface area. The specific surface area of the catalysts
was calculated from the N2 adsorption and desorption isotherms results by the BET
method. XPS analyses were conducted on ESCALAB 250XI from Thermo Fisher
Scientific with a monochromatic A1-Kα (ultraviolet He1, He2) X-ray source.

Computational details. DFT calculations were carried out using the Vienna Ab
initio Simulation Package (VASP)30,31. Exchange-correlation energies were treated
by Perdew–Burke–Ernzerhof functional based on generalized gradient approx-
imation (GGA)32. An energy cutoff of 400 eV was used for plane-wave expansion.
A 3 × 3 × 1 Monkhorst–Pack k-point sampling of the Brillouin zone was used for
all slab calculations33. Gaussian smearing was used with a width of 0.05 eV to
determine partial occupancies. Geometries were relaxed using a conjugate gradient
algorithm until the forces on all unconstrained atoms were less than 0.03 eV Å−1.
In order to take into account for on-site Coulomb and exchange interactions, GGA
+U schemes were used with the effective U values of 4.0, 3.3, and 4.0 for Mn, Co,
and Fe, respectively. The eight-layered PBMO slab model was constructed with the
vacuum thickness of up to 17 Å in the z-direction by cleaving a bulk PBMO
structure9. The dopant position at top surface or in fifth layer represents that it is
located at surface or in bulk, respectively.

In order to describe the alloy formation, we substituted two Mn atoms with Co
or Fe atom in PBMO (Supplementary Fig. 13). The Gibbs free energies were also
calculated for the thermodynamics of alloy and oxygen vacancy formation based
on our previous calculation scheme (Supplementary Fig. 14)9. More calculation
details are provided in Supplementary Information.

Catalytic activity of DRM. Catalytic activity for DRM was evaluated through gas
chromatography (GC) (Agilent 7820 A GC instrument) with a thermal con-
ductivity detector (TCD) and a packed column (Agilent carboxen 1000). The gas
used for GC measurement were controlled using a mass flow controller (Atovac
GMC1200) and the exact volume value of gas was calibrated through a bubble flow
meter.

The 0.2 g of sample powder (950 °C sintered in air for 4 h) was prepared and
packed in the middle of the quartz tube reactor using glass wool. The sample
powder was in situ reduced at 900 °C for 30 min while blowing humified H2 (3%
H2O) gas in a quartz tube reactor.

After reduction, purging for 1 h with He gas before each measurement to
remove residual H2, then CO2, CH4, and He were inserted with a ratio of 20:20:60
ml min−1, respectively.

The dry reforming reaction is shown as below, CO2 conversion and CO
selectivity were calculated using the following equations34,35:

CH4 þ CO2 $ 2COþ 2H2ðΔH0
298K ¼ 247 kJ=molÞ

CO2 conversion ¼ ½CO2 �consumed
½CO2 �feed ´ 100% ¼ ½CO�detect

CO½ �detectþ2½CO2 �detect ´ 100%

CO selectivity ¼ ½CO�detect
CO½ �detectþ½CO2 �detect ´ 100%

Data availability
The data measured, simulated, and analyzed in this study are available from the corre-
sponding author on reasonable request.
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