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We present the image segmentation model using the modified Allen–Cahn equation with a fractional Laplacian. The motion of
the interface for the classical Allen–Cahn equation is known as the mean curvature flows, whereas its dynamics is changed to the
macroscopic limit of Lévy process by replacing the Laplacian operator with the fractional one. To numerical implementation, we
prove the unconditionally unique solvability and energy stability of the numerical scheme for the proposed model. The effect of
a fractional Laplacian operator in our own and in the Allen–Cahn equation is checked by numerical simulations. Finally, we give
some image segmentation results with different fractional order, including the standard Laplacian operator.

1. Introduction

Image segmentation is a process of image partitioning into
nonintersection parts with similar properties such as gray
level, color, texture, brightness, and contrast [1]. The medical
image segmentation is important to study anatomical struc-
tures, to identify region of interest such as tumor, lesion, and
other abnormalities, to measure tissue volume of tumor or
area of lesion, and to help in treatment planning [2].

One of the most widely used methods for image seg-
mentation is the Mumford–Shah model [3] and it has been
extensively studied and extended in many works [4–6].

This paper is organized as follows: In Section 2, we
describe themathematical model for the image segmentation
using a fractional Laplacian operator. In Section 3, simulation
results are shown for effect of a fractional operator and image
segmentations. Finally, the conclusion is drawn in Section 4.

2. Mathematical Model

2.1. Fractional Allen–Cahn Equation. The Allen–Cahn equa-
tion, which was first introduced to describe coarsening in
binary alloys [7], is a gradient flow under 𝐿2-inner product

space with the following Ginzburg–Landau free energy func-
tional:

E
𝐴𝐶 (𝜙) = ∫

Ω
(𝐹 (𝜙)𝜖2 + 12 󵄨󵄨󵄨󵄨∇𝜙󵄨󵄨󵄨󵄨2)𝑑x, (1)

and it has the following form:

𝜕𝜙 (x, 𝑡)𝜕𝑡 = −gradE𝐴𝐶 (𝜙) = −𝐹󸀠 (𝜙)𝜖2 + Δ𝜙. (2)

Here 𝜙(x, 𝑡) ∈ [−1, 1] is the concentration defined in a
bounded domain Ω ∈ R2, 𝜖 is the coefficient related to an
interfacial energy, and 𝐹(𝜙) = 0.25(1−𝜙2)2 is the double-well
potential energy function.

In recent years, the fractional Allen–Cahn equation has
been researched in some literature to study the competing
stable phases having an identical Lyapunov functional density
[8–10]: 𝜕𝜙𝜕𝑡 = −𝐹󸀠 (𝜙)𝜖2 + Δ𝑠x𝜙, (3)

where Δ𝑠x is the fractional Laplacian, obtained as the macro-
scopic limit of Lévy process [11], with fractional order 0 <
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𝑠 ≤ 1. Here, the macroscopic limit in space is computed by
considering that the microscopic spatial scale is very small.
Indeed, when the random walk involves correlations, non-
Gaussian or non-Markovian memory effects, the classical
diffusion equation fails to describe the macroscopic limit.
However a generalization of the Brownian random walk
(Lévy process) model allows us to have the incorporation
of nondiffusive effects. It eventually leads to the fractional
Laplacian instead of the classical Laplacian in the macro-
scopic limit. Note that similar models have been studied in
physical literature in a very different context such as a barrier
crossing of a particle driven by white symmetric Lévy noise
[12–16].

2.2. Modification to Image Segmentation. Let 𝑓0(x) : Ω 󳨀→[0, 1] be a grayscale given image. Then, the Mumford–Shah
model, which is one of the most widely used models for
image segmentation [3], minimizes the following functional
to perform image segmentation:

E
𝑀𝑆 (𝑢, 𝐶) = ]1Length (𝐶) + ]2 ∫

Ω

󵄨󵄨󵄨󵄨𝑓0 − 𝑢󵄨󵄨󵄨󵄨2 𝑑x
+ ]3 ∫

Ω−𝐶
|∇𝑢|2 𝑑x, (4)

where 𝑢 is the piecewise smooth function approximating 𝑓0,𝐶 is the segmenting curve representing the set of edges in the
given image 𝑢, and ]1, ]2, ]3 are the positive constants. Let us
modify the energy functional (4) as a phase-field formulation.
First, it should be noted that 𝐶 can be considered as the zero-
contour of 𝜙. Then, the following equation holds:

Length (𝐶) = ∫
𝐶
1𝑑x ≈ ∫

Ω

𝐹 (𝜙)𝜖2 𝑑x. (5)

Next, if we replace 𝑢 with (1 + 𝜙)/2, (4) can be written as
follows:

E
𝑀𝑆 (𝜙) = ]1 ∫

Ω

𝐹 (𝜙)𝜖2 𝑑x + ]2 ∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓0 − 1 + 𝜙2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑x

+ ]3 ∫
Ω−𝐶

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇ (1 + 𝜙2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑x. (6)

Since ∇𝜙 = 0 at x ∈ 𝐶, ∫
Ω
|∇𝜙|2𝑑x = ∫

Ω−𝐶
|∇𝜙|2𝑑x.

Therefore, the fractional analogue phase-field approach of
the Mumford–Shah model is considered as minimizing the
following energy functional:

E (𝜙) = ∫
Ω
(𝐹 (𝜙)𝜖2 + 12 󵄨󵄨󵄨󵄨󵄨(−Δ)𝑠/2 𝜙󵄨󵄨󵄨󵄨󵄨2)𝑑x

+ 𝜇∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓0 − 1 + 𝜙2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑x, (7)

and the governing equation can be written as follows:

𝜕𝜙𝜕𝑡 = −𝜙3 − 𝜙𝜖2 + Δ𝑠x𝜙 + 𝜇(𝑓0 − 1 + 𝜙2 ) . (8)

2.3. Numerical Solution. We consider the Fourier spectral
method in space and the linear convex splitting scheme,
which is known as stable and uniquely solvable one [17], in
time. First, the temporal discretization of (8) is written as
follows:

𝜙𝑛+1 − 𝜙𝑛Δ𝑡 = −(𝜙𝑛)3 − 3𝜙𝑛 + 2𝜙𝑛+1𝜖2 + Δ𝑠x𝜙𝑛+1
+ 𝜇(𝑓0 − 1 + 𝜙𝑛+12 ) for 𝑛 = 1, . . . , 𝑛𝑡. (9)

Remark that (9) has the bounded solution ‖𝜙𝑛‖∞ ≤ 1 for any𝑛 = 1, . . . , 𝑛𝑡 if ‖𝑓0‖∞ ≤ 1 and ‖𝜙0‖∞ ≤ 1 where ‖𝜙‖∞ =
max𝑥𝜙 is the 𝑙∞-norm. It comes from the fact that −Δ𝑠x has
nonnegative eigenvalues.

Theorem 1. The numerical scheme (9) is uniquely solvable for
any time step Δ𝑡 > 0.
Proof. Weconsider following functional defined on a 𝑙2-inner
product space:

𝐺 (𝜙) = 12 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩22 + Δ𝑡E𝑐 (𝜙) − (𝑆𝑛, 𝜙)2 , (10)

where (𝜙, 𝜓)2 = ∫
Ω
𝜙𝜓𝑑x is the 𝑙2-inner product, ‖𝜙‖22 =(𝜙, 𝜙)2 is the 𝑙2-norm,E𝑐(𝜙) = (𝜙2/𝜖2, 1)2 + 0.5‖(−Δ)𝑠/2x 𝜙‖22 +𝜇‖𝑓0 − 0.5(1 + 𝜙)‖22, 𝑆𝑛 = 𝜙𝑛 −Δ𝑡((𝜙𝑛)3 − 3𝜙𝑛)/𝜖2. Note that it

can be solved if and only if 𝐺 has the unique minimizer 𝜙𝑛+1.
For any 𝜓 and scalar 𝛼,

𝑑𝑑𝛼E𝑐 (𝜙 + 𝛼𝜓)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼=0
= (2𝜙𝜖2 − Δ𝑠x𝜙 − 𝜇(𝑓0 − 1 + 𝜙2 ) , 𝜓)

2

, (11)

𝑑2𝑑𝛼2E𝑐 (𝜙 + 𝛼𝜓)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼=0 = 2𝜖2 + 󵄩󵄩󵄩󵄩󵄩(−Δ)𝑠/2x 𝜓󵄩󵄩󵄩󵄩󵄩22 + 𝜇2 ≥ 0. (12)

Therefore E𝑐(𝜙) is convex, which implies that 𝐺(𝜙) is also
convex. Note that the unique minimizer 𝜙𝑛+1 makes the first
variation of 𝐺(𝜙) zeros, i.e.,

(𝜙𝑛+1 − 𝜙𝑛Δ𝑡 + (𝜙𝑛)3 − 3𝜙𝑛 + 2𝜙𝑛+1𝜖2 − Δ𝑠x𝜙𝑛+1
− 𝜇(𝑓0 − 1 + 𝜙𝑛+12 ) , 𝜓)

2

= 0, (13)

and it holds if and only if (9) holds.

Theorem 2. The numerical scheme (9) is unconditionally
energy stable, i.e., E(𝜙𝑛+1) ≤ E(𝜙𝑛) for any time step Δ𝑡 > 0.
Proof. Note that we already prove thatE𝑐(𝜙) is convex in the
proof ofTheorem 1. LetE𝑒(𝜙) = E𝑐(𝜙)−E(𝜙).Then, it is clear
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that E𝑒(𝜙) is concave since 𝜙 ∈ [−1, 1] and the followings
hold for any 𝜙 and 𝜓:

E𝑐 (𝜙) −E𝑐 (𝜓)
≤ (2𝜙𝜖2 − Δ𝑠x𝜙 − 𝜇(𝑓0 − 1 + 𝜙2 ) , 𝜙 − 𝜓)

2

, (14)

E𝑒 (𝜙) −E𝑒 (𝜓) ≥ (−𝜓3 − 3𝜓𝜖2 , 𝜙 − 𝜓)
2

. (15)

Then,

E (𝜙) −E (𝜓) = (E𝑐 (𝜙) −E𝑐 (𝜓)) − (E𝑒 (𝜙)
−E𝑒 (𝜓)) ≤ (2𝜙𝜖2 − Δ𝑠x𝜙 − 𝜇(𝑓0 − 1 + 𝜙2 )
+ 𝜓3 − 3𝜓𝜖2 , 𝜙 − 𝜓)

2

.
(16)

We, respectively, replace 𝜙 and 𝜓 with 𝜙𝑛+1 and 𝜙𝑛. Then (9)
says that

E (𝜙𝑛+1) −E (𝜙𝑛) ≤ ((𝜙𝑛)3 − 3𝜙𝑛 + 2𝜙𝑛+1𝜖2
− Δ𝑠x𝜙𝑛+1 − 𝜇(𝑓0 − 1 + 𝜙𝑛+12 ) , 𝜙𝑛+1 − 𝜙𝑛)

2

,
= (−𝜙𝑛+1 − 𝜙Δ𝑡 , 𝜙𝑛+1 − 𝜙)

2

= − 1Δ𝑡 󵄩󵄩󵄩󵄩󵄩𝜙𝑛+1 − 𝜙󵄩󵄩󵄩󵄩󵄩22
≤ 0.

(17)

Before applying the Fourier spectral method, we present
the Fourier definition of the fractional Laplacian operator.

Definition 3. The Fourier definition of Δ𝑠x is [19]
F (Δ𝑠x𝜙) (𝜉) = − 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨𝑠F𝜙 (𝜉) , (18)

where F(⋅) is a Fourier transformation. Note that the
Fourier transformation of the standard Laplacian operator is
F(Δ𝜙)(𝜉) = −|𝜉|2F𝜙(𝜉).

By the definition, (9) can be written as follows
using the discrete Fourier transformation Fℎ𝜙𝑛 ≈∑𝑁𝑥/2−1
𝑝=−𝑁𝑥/2

∑𝑁𝑦/2−1
𝑞=−𝑁𝑦/2

𝜙𝑛𝑝𝑞𝑒2𝜋(𝑝𝑥/𝐿𝑥+𝑞𝑦/𝐿𝑦)/(𝑁𝑥𝑁𝑦):
𝜙𝑛+1𝑝𝑞 − 𝜙𝑛𝑝𝑞Δ𝑡 = −(𝜙𝑛𝑝𝑞)3 − 3𝜙𝑛𝑝𝑞 + 2𝜙𝑛+1𝑝𝑞𝜖2 − 󵄨󵄨󵄨󵄨󵄨𝜉𝑝𝑞󵄨󵄨󵄨󵄨󵄨𝑠 𝜙𝑛+1𝑝𝑞

+ 𝜇(𝑓0,𝑝𝑞 − 1 + 𝜙𝑛+1𝑝𝑞2 ) , (19)

where 𝜙 is the discrete Fourier coefficient, 𝐿𝑥 and 𝐿𝑦 are,
respectively, the length of the domain in 𝑥- and 𝑦-axis, 𝑁𝑥
and𝑁𝑦 are, respectively, the number of grid points in 𝑥- and𝑦−axis, Δ𝑡 is the temporal step size, and 𝜉2𝑝𝑞 = (2𝜋𝑝/𝐿𝑥)2 +(2𝜋𝑞/𝐿𝑥)2. Therefore, we can get 𝜙𝑛+1 as follows:

𝜙𝑛+1 ≈ F
1
ℎ𝜙𝑝𝑞

= F
−1
ℎ (𝜙𝑝𝑞 + Δ𝑡 ((3𝜙𝑝𝑞 − (𝜙𝑝𝑞)3) /𝜖2 + 𝜇 (𝑓0,𝑝𝑞 − 1/2))1 + Δ𝑡 (2/𝜖2 + 𝜉2𝑝𝑞 + 𝜇/2) ) . (20)

3. Numerical Experiments

3.1. Effect of the Fractional Laplacian Operator. To observe
the only difference between the fractional Laplacian Δ𝑠x and
classical Laplacian Δ x in image segmentation, let us select𝜖 ≫ 1 large enough such that

𝜙𝑛+1 − 𝜙𝑛Δ𝑡 ≈ 𝜖Δ𝑠x𝜙𝑛+1 + 𝜇(𝑓0 − 1 + 𝜙𝑛+12 ) , (21)

where 𝜖 is the rescaled parameter. Since scheme (9) has
bounded and unconditionally stable solutions, it is easy to see
that (21) has the same properties, as well. For the numerical
illustration, we consider original and noise 512 × 512 images𝑓𝑡𝑟𝑢𝑒0 , 𝑓𝑛𝑜𝑖𝑠𝑒0 . We take the image 𝑓𝑛𝑜𝑖𝑠𝑒0 as the initial data. The
fractional orders and parameters for both operators Δ𝑠x andΔ x are given by 𝑠 = 0.5, 𝜖 = 1.47 and 𝑠 = 1, 𝜖 = 0.01,
respectively. Note that there are no criteria of choosing the
best parameters for image processing, while these parameters
heuristically give the best result.The other parameters𝜇 = 20,Δ𝑡 = 0.0001, 𝑛𝑡 = 40 are used. For our convenience, we
denote the final solution from the operator of fractional order𝑠 by 𝜙𝑠.

With initial data 𝑓𝑛𝑜𝑖𝑠𝑒0 and its error ‖𝑓𝑡𝑟𝑢𝑒0 − 𝑓𝑛𝑜𝑖𝑠𝑒0 ‖𝑓𝑟𝑜 ≈336.6, we perform numerical tests. Comparisons are made
for the numerical results which we have ‖𝑓𝑡𝑟𝑢𝑒0 − 𝜙0.5‖𝑓𝑟𝑜 ≈‖𝑓𝑡𝑟𝑢𝑒0 − 𝜙1‖𝑓𝑟𝑜 ≈ 298.3. If large noise is imposed upon the
original image 𝑓𝑡𝑟𝑢𝑒0 , the value of ‖𝑓𝑡𝑟𝑢𝑒0 − 𝑓𝑛𝑜𝑖𝑠𝑒0 ‖𝑓𝑟𝑜 is also
large. If, the other way around, there is no noise, then𝑓𝑛𝑜𝑖𝑠𝑒0 is
equal to𝑓𝑡𝑟𝑢𝑒0 , i.e., ‖𝑓𝑡𝑟𝑢𝑒0 −𝑓𝑛𝑜𝑖𝑠𝑒0 ‖𝑓𝑟𝑜 is zero. In our setting, the
error 336.6 implies the difference between initial and noised
images. Note that “Barbara” image is comprised of 512 × 512
pixels, and each pixel belongs to [0, 1]. We can observe that
cartoon and texture are kept in Figure 1(c). However, there is
noticeable blur at texture region in Figure 1(d).

3.2. Fractional Allen–Cahn Equation. It is known that the
motion of interfaces for the classical Allen–Cahn equation
follows the mean curvature flow [20]. In this section, we
performnumerical simulations to compare the fractional and
classical Allen–Cahn equations. Figure 2 shows the evolution
of zero-contours of 𝜙 solving the fractional Allen–Cahn
equation with different 𝑠 values with circular and square
initial conditions, respectively. Here, we used the following
parameters: 𝑁𝑥 = 128, Ω = (0, 1)2, Δ𝑡 = 0.1, the final time
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(a) (b) (c) (d)

Figure 1: (a) Original image 𝑓𝑡𝑟𝑢𝑒0 , (b) noise image 𝑓𝑛𝑜𝑖𝑠𝑒0 , (c) close-up image at 𝜙0.5 with order 𝑠 = 0.5, and (d) close-up image at 𝜙1 with order𝑠 = 1.0.

(a) 𝑠 = 1 (b) 𝑠 = 0.5 (c) 𝑠 = 0.25 (d) 𝑠 = 0.1

Figure 2: Evolution of zero-contours of 𝜙 solving fractional Allen–Cahn equation with different 𝑠 values and circular (top) and square
(bottom) initial conditions.

𝑇 = 130, 𝜖 = 0.0075, and the dotted lines represent the initial
conditions.

In Figure 2(a), the interfaces evolve as motions by mean
curvature since it is the classical Allen–Cahn equation case,
whereas we can observe that the dynamics is different from
the classical one, especially at the tip of the interfaces, in
Figures 2(b) and 2(c). When 𝑠 is relatively small case, 𝑠 =0.1, the results give same shapes as the initial conditions
(see Figure 2(d)). From the results, we can assume that it
is better to capture a sharpen interface using the fractional
Allen–Cahn equation with the proper 𝑠 value and then using
the classical Allen–Cahn equation.

3.3. Basic Figures. In this section, we consider the segmen-
tation with basic figures. First, the segmentation results
using classical and fractional Allen–Cahn equation with the
following parameters are shown in Figure 3: 𝑁𝑥 = 256, Ω =(0, 1)2, Δ𝑡 = 10, 𝜖 = 0.01, and 𝜇 = 10000, and star-shaped

initial condition. At the tip of the star, we can observe that the
fractional Allen–Cahn equation gives better performance.

Next, we consider other segmenting simulations for two
simple figures, circle and square, with salt and pepper noise
using the following parameters: 𝑁𝑥 = 256, Ω = (0, 1)2,Δ𝑡 = 10, 𝜖 = 0.0038 𝜇 = 10000. As shown in Figure 4, the
case using the fractional Allen–Cahn equation (Figure 4(c))
gives better result than the case using classical Allen–Cahn
equation (Figure 4(b)), especially at the corner of the square.
However, the segmentation is interrupted by the noise when𝑠 becomes too small (see Figure 4(d)).

3.4. Medical Images. Here, we perform the numerical sim-
ulations applying the proposed segmentation algorithm to
medical images. Figure 5 shows the segmentation results for
brain CT image with and without injury [18] when (a) 𝑠 = 1
and (b) 𝑠 = 0.05 using the following parameters: Δ𝑡 = 10,𝜖 = 0.1, and 𝜇 = 10000. As opposed to the case with classical
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(a) Initial (b) s = 1 (c) s = 0.15

Figure 3: (a) Initial condition and segmentation results with (b) classical and (c) fractional Allen–Cahn equations.

(a) Initial (b) s = 1 (c) s = 0.25 (d) s = 0.15

Figure 4: (a) Initial condition and (b)–(d) segmentation results with different 𝑠 values.

(a) s = 1 (b) s = 0.05

Figure 5: Segmentation results for brain CT images with (left) and without (right) injury [18] when (a) 𝑠 = 1 and (b) 𝑠 = 0.05.
Allen–Cahn equation, the injured part can be segmented in
the case of Figure 5(b), which uses the fractional Laplacian
operators.

4. Conclusions

We proposed the image segmentation model using the mod-
ified Allen–Cahn equation with a fractional Laplacian based
on the Mumford–Shah energy functional. The fractional
order, obtained as the macroscopic limit of Lévy process,
was expected to change the dynamics of the Allen–Cahn
equation. Based on the convex splitting method, we proved
the unconditionally unique solvability and energy stability of
the numerical scheme. The segmentation results show that
the fractional Laplacian operator has a better performance
when the original image has sharp tips and corners and
the abnormalities are close to each other. Note that our

approach requires parameter tuning for image segmentation.
Thebest segmentation-parameter combination, including the
fractional order “s”, depends on the original image. The
minimizer of our proposed functional is different for each
of the initial images, so that we have to select the best
parameter combination within all possible combinations of
the parameters.
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