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Abstract

The human brain intrinsically operates with a large number of synapses, more than 10'°. Therefore, one of the most
critical requirements for constructing artificial neural networks (ANNs) is to achieve extremely dense synaptic array
devices, for which the crossbar architecture containing an artificial synaptic node at each cross is indispensable.
However, crossbar arrays suffer from the undesired leakage of signals through neighboring cells, which is a major
challenge for implementing ANNSs. In this work, we show that this challenge can be overcome by using Pt/Ta0,/
nanoporous (NP) TaO,/Ta memristor synapses because of their self-rectifying behavior, which is capable of suppressing
unwanted leakage pathways. Moreover, our synaptic device exhibits high non-linearity (up to 10%), low synapse
coupling (5.C, up to 4.00 x 10™°), acceptable endurance (5000 cycles at 85 °C), sweeping (1000 sweeps), retention
stability and acceptable cell uniformity. We also demonstrated essential synaptic functions, such as long-term
potentiation (LTP), long-term depression (LTD), and spiking-timing-dependent plasticity (STDP), and simulated the
recognition accuracy depending on the S.C for MNIST handwritten digit images. Based on the average S.C (1.60 X
107 in the fabricated crossbar array, we confirmed that our memristive synapse was able to achieve an 89.08%

recognition accuracy after only 15 training epochs.

Introduction

Over the past few decades, von Neumann architecture
with Si-based complementary metal-oxide-semiconductor
(CMOS) technology has served as a mainstay of the
modern computer and electronics industries."> However,
the impending fundamental physical limits of CMOS
technology and increased fabrication cost have become
the main obstacles to sustainable computing technology
envisioned for the future.”** In the big data era, the
explosive growth of unstructured data and data com-
plexity have revealed the limits of classical computing
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hardware in terms of the von Neumann bottleneck
between processor and memory,” the rapid increase of
heat flux due to CMOS scaling,® and device packing
density restriction due to local energy dissipation.”

The neuromorphic electronic system, which imitates
the principles of biological synapses in a huge network of
neurons, has emerged as a promising approach for
implementing exceptionally energy-efficient, time-effi-
cient, and fault-tolerant computing technologies.** Many
attempts to implement the essential synaptic functions,
such as short- and long-term plasticity and spike-timing
dependent plasticity (STDP), have resulted in various
device architectures, including memristors,'”'* phase
change memory,"”'® and floating-gate transistors.'”'®
Among these devices, memristors, which consist of a
simple storage medium sandwiched between two con-
ductors, are strong candidates for device platforms for
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Fig. 1 Schematics of the perceptron model for the neurotransmission process and hardware implementation of ANNs. a Three pre-neurons
(yellow) and one post-neuron (green) are connected via individual synapses. The inset shows the simplified neurotransmission process. The input (x))
from the axon of each pre-neuron is scaled by its own w; value and sent to a dendrite of the post-neuron. In the cell body of the post-neuron, all
scaled inputs are integrated (O wx). b Schematic of a 4 x 4 crossbar array consisting of synaptic devices for ANNs. The input voltages (x, i=1, 2, 3, and
4) are individually applied to the rows (pre-neurons) of the array (yellow lines), and the neural signals (Cw;x;) are sent to a designated column line, i.e,,
the jth post-neurons (blue arrow). In contrast to the biological neurotransmission process, undesired neural signals (>/ypgesires) are also generated
through the neighboring synaptic devices (red arrow) in the array without selectors, which means the output signal is given by Swix; + Slyndesired
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artificial synapses.'®"'*'*?° Fundamental device studies
have shown that memristors offer desirable properties for
artificial synapses, such as a nanoscale footprint,*" low-
energy”” and low-cost fabrication,”® and analog switching
based on material reconfigurations that can be manipu-
lated by diverse electrical stimuli.”*

Because synapses are connectivities between numerous
neurons and the analog functionality in the storage of
synaptic weight is inherent in the two terminal nodes,**>°
neural networks bear some resemblance to crossbar
arrays in which memristors are arranged at each cross-
point.">'*?° In real neural networks, each of the hundreds
of types of neurons has its own receptor and ion channels
that respond to a certain set of inputs through synapse-
defined interconnections between the axons of pre-
neurons and a dendrite of post-neurons (Fig. 1a), which
can perform brain activity.>>? The role of the dendrite is
to provide inputs from multiple pre-neurons into the cell
body of a single post-neuron. In the perceptron model
that simplifies the biological neural network, a post-
neuron in the brain receives input signals (x;) from
thousands of other pre-neurons through a biological
neurotransmission process (Fig. 1a).”” Each of the input
signals is scaled by its own synaptic weight (w;) and is
expected to respond differently depending on the history
on its synaptic weight. Then, all inputs are integrated

(Zwg;) into the cell body of the post-neuron (Fig. 1a).
Some of these outputs (wix;) tend to excite the connected
neuron whereas others tend to inhibit it.*® If the summed
output signal is higher than a threshold value, the signal
will be delivered in the form of an action potential firing
along the axon of the post-neuron. This signal processing,
which is achieved via a complicated interplay among
different types of receptors and ion channels, is recog-
nized as the foundation of learning and memory in the
human brain.*>*®

Considering the signal processing capability of the
neural network, the x; and w; in the electrical crossbar
array can be regarded as the applied input voltage and
conductance of the ith memristor, respectively. The array
refers to an artificial neural network (Fig. 1b).101920 1
many types of memristors, crosstalk (called cell-to-cell
coupling) in which the currents flow through undesired
pathways (indicated by the red arrows in Fig. 1b) occurs
when the array is comprised of only memristors (i.e.,
without selectors).””*® This problem may cause the
creation of the undesired neural signals (i.e., XI;/,gesireq) iIN
the ANNs (Fig. 1b),>' which could result in misreading of
the output current flowing through the designated col-
umn lines (i.e., post-neuron), and the learning and
memory capability of the array would be severely degra-
ded. More energy would also be consumed because of the
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increase in the number of weight updates in the learning
process.”” Although diverse selector devices in crossbar
arrays have been suggested to suppress these uninten-
tional leakage paths,30’32_34 device structures for artificial
synapses that only transmit the synaptic signals along the
desired pathway without a selector have rarely been
reported. In addition, the effect of crosstalk between
neighboring synapses on the learning accuracy in ANNs
has rarely been investigated. Many studies of memristor
synapses have focused on the mimicking of synaptic
functions at the single-device level,”>'* and have per-
formed learning simulations under the assumption that
there is negligible synapse-to-synapse coupling. There-
fore, designing and fabricating artificial synapses that
perform desirable synaptic functions and suppress
unwanted neural signals in the array is a prerequisite for a
high-accuracy and low-power learning process.

In this study, we designed and fabricated a self-
rectifying memristor synapse and crossbar array (16 x
16) employing a Pt/TaO,/nanoporous (NP) TaO,/Ta
junction structure that can effectively prevent unwanted
neural signals. The essential synaptic and switching
characteristics are mimicked and statistically evaluated.
Moreover, based on the simulation of MNIST pattern
recognition, we verified that the recognition accuracy can
be determined by the magnitude of the synapse-coupling
(S.C) values. Considering the average experimental value
of S.C (=1.60 x 10™%), we demonstrated that the trained
network consisting only of our memristive synapse can
achieve a recognition accuracy of 89.08% after 15 epochs
for the MNIST digit images. This value is much higher
than the case when a non-rectifying memristor is used
(e, S.C=1.0). Our proposed TaO,/NP TaO, memristor
structure could provide an attractive synaptic platform for
implementation of ANNs with high-accuracy and energy-
efficient learning capability.

Materials and methods
Fabrication of the memristor synapse

Ta metal (200 nm) was deposited on a SiO,/Si substrate
using DC sputtering after the substrate was thoroughly
cleaned with acetone, isopropyl alcohol, and DI water for
5 min. Using the designed galvanic cell with an electrolyte
consisting of sulfuric acid (150 ml, 98%, DAEJUNG 7683-
4100), HF (0.25 ml, 49%, J.T. Baker 9564-06), and H,O
(4.3 ml), the Ta metal was anodized at 50V for 10s. The
upper Ta metal was simultaneously oxidized and etched,
resulting in the formation of NP TaO, (=65 nm) on top of
the non-anodized Ta metal. The oxygen ions are mostly
consumed to form the TaO, on Ta and other oxidized
materials (e.g., SO3) are rarely produced during the ano-
dization, indicating a low possibility of producing a
potential residual of S or SOjz that could affect the
switching.**~*® Then, TaO,, (=10 nm) was deposited using
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RF sputtering. To complete the device, patterned Pt metal
(100 nm) was sputtered on the TaO,/NP TaO,/Ta layer
using a shadow mask to act as the top electrode (200-pm
junction diameter).

Measurement of device characterization

An Agilent 4155C semiconductor parameter analyzer
and 41501B pulse generator in the probe station were
used to measure the electrical and synaptic characteristics
of the TaO,/NP TaO, memristor synapse. During the
measurements, a voltage was applied to the top Pt elec-
trode and the bottom Ta electrode was grounded. All
measurements were performed in air and at room tem-
perature except the endurance tests, which were con-
ducted at 85 °C.

Results and discussion
Single TaO,/NP TaO, memristor

To fabricate an artificial synapse that can robustly block
undesirable neural signals generated through adjacent
synapses in addition to performing essential synaptic
functions, we designed a homogeneous bilayer memristor
structure consisting of stackable tantalum oxide bilayers
(non-porous and nanoporous layers). Figures 2a, b show a
schematic diagram of the designed memristor synapse
and a cross-sectional transmission electron microscopy
image, respectively, in which the junction structure con-
sists of Pt/TaO, (=10 nm)/NP TaO, (=65 nm)/Ta layers.
The NP TaO, layer was formed from the bottom Ta metal
using anodization in a sulfuric acid solution with HF and
H,0O, exhibiting an oxygen vacancy (V) gradient
depending on the TaO, depth. Details of the device fab-
rication are described in the Methods section. The exis-
tence of pores (diameter~20—50nm) inside the TaO,
layer leads to a reduction in the overall switching currents
due to its charge/ion trapping ability and the high insu-
lation of the pore itself;>>*® decreasing the energy
required for switching. The primary role of the top TaO,
layer (y=~2.4) deposited on the NP TaO, using RF sput-
tering is to form a robust Schottky barrier between the top
Pt metal and the TaO, layer that is constant under diverse
input stimuli. This structure is expected to effectively
suppress undesired neural signals in the reverse voltage
region at a very low level, regardless of programming
voltage variation. In addition, the top TaO, layer can
prevent the potential formation of electrical short circuits
based on top Pt metal penetration through the NP oxide
layer.

Figure 2c shows the representative current-voltage
(I-V) switching characteristics for the TaO,/NP TaO,
memristor synapse for different magnitudes of sweeping
voltage (Vs). All measurements show asymmetric bipolar
(self-rectifying) switching behavior controlled by different
bias polarities without any formation process, which
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Fig. 2 Junction structure, electrical characteristics, and synaptic functions of the TaO,/NP TaO, memristor synapse. a Schematic of a

memristor synapse with a junction diameter of 200 um. b Cross-sectional TEM image of the memristor synapse. ¢ Self-rectifying |-V switching curves
of the memristor synapse versus the magnitude of V; (from 4 to 8 V). The inset shows the |-V curves on a linear scale. d Consecutive |-V switching
curves (1000 times) at |Vi] =4 V. e, f XPS depth-profiling analysis of the Ta 4f spectra as a function of the sweeping direction of programing voltage
applied to the Pt electrode [V > 0 for (e) and V < 0 for (f)]. V > 0 indicates a voltage sweep from 0 to 10V and V < 0 indicates voltage sweeping from 0
to —10V. g Plot of x (or y) in TaO, (o ) as a function of junction depth, showing the change in the V; distribution and position of the Ohmic-like
contact at NP TaO,/Ta. h Plots of PSC as functions of the pulse width (from 20 to 40 ms) in response to potentiating and depressing input-signal
trains (100 pulses for each pulse train). Implementation of LTP and LTD. The PSC was read at V, = 5V whenever one programming pulse was applied

Pulse number (#)

resembles the typical switching curve of one-diode—one-
resistor (1D-1R) memory devices.>** In the negative
voltage region, the switching current of the device can be
suppressed based on the rectifying property of the
Schottky barrier at Pt/TaO,; its level is roughly main-
tained (~10 '°A) regardless of programming voltage
variation (from 4 to 8V). In contrast, in the positive
voltage region, the hysteresis window gradually widens as
the magnitude of Vs increases. Different voltage points for
the minimal current values reflect the different charge-
trapping ability according to the applied voltage polarity
(Fig. 2c), which may be influenced by the junction
asymmetry.>>** The multiple switching conductances of
the TaO,/NP TaO, memristor controlled by the input
voltages can be utilized as variable synaptic weights for
the artificial synapse. The maximum non-linearity of the
devices was ~10% this value was obtained from the cur-
rent ratio between the read voltage (defined as V, = Vg/2)
and —V, in the ON state and is comparable to previously
reported values for 1D-1R memory devices in a densely

packed crossbar array (Supplementary Information,
Fig. S1).>**' Higher non-linearity implies a further
reduction in the influence of undesired neural signals
flowing through neighboring synapses on a selected
synapse. The memristor synapse exhibited excellent
operational retention (~1.2 x 10* s) and endurance (5.0 x
10? cycles at 85°C), in addition to repeatable sweeping
stability (1000 sweeps for |Vs| =4V) (Fig. 2d and Sup-
plementary Information, Figs. S2a and S2b).

The programming pulse applied as the pre-synaptic
input can determine the consumed energy per the weight
update for the network training. The relatively high pro-
gramming voltages and long pulse width must be further
improved for application in energy-efficient and large-
scale neuromorphic device arrays. Furthermore, because
the pore size reflects the trapping ability, which deter-
mines the switching conductance level, and its variation
can cause fluctuations in the switching parameters, such
as power consumption, non-linearity, and minimal cur-
rent, the size and uniformity of the pores should be



Choi et al. NPG Asia Materials (2018) 10: 1097-1106

improved to realize a uniform and nanoscale memristor
synapse. We previously suggested that the combination of
intentional engineering of the porous structure and
operational optimization can enhance the essential
switching performance metrics, such as programming
power and non-linearity.*” There is a potential for our
device system to be programmed at a relatively low bias
region if we properly engineer the pore structure and
optimized the junction structure.

Because the NP TaO, oxidation state was gradually
reduced as its depth was increased, the asymmetric con-
tacts in the memristor were initially established at both
interfaces, i.e., the Schottky contact at Pt/TaO, (y=2.4)
and the Ohmic-like contact at the NP TaO,/Ta (x=~0.2)
interface (Figs. 2e, f). Depending on the applied voltage
polarity, the distribution of V, in the NP TaO, layer could
be partially altered due to the V; drift in the electric field
and its exchange between the TaO, layer and the NP
TaO,, layer, which lead to a change in the position of the
Ohmic-like contact in the junction (see the schematic of
the switching process in Fig. S3). The positively charged
V,; values that were additionally produced from TaO, and
the pore edge presumably migrate toward the Ta metal
layer when a positive voltage is applied to the Pt top
electrode (V > 0). In this case, the position of the Ohmic-
like contact formed at the NP TaO,/Ta interface could be
located at a shallower depth in the junction, resulting in a
reduction of the resistance at V, (i.e., the ON state).
Conversely, V; migrates toward the TaO, layer and the
pore edge when a negative voltage is applied to the Pt top
electrode (V' <0). The Ohmic-like contact could be loca-
ted at a deeper depth in the junction, resulting in an
increase in the resistance at V, (i.e., the OFF state). Using
ex-situ depth-profiling X-ray photoelectron spectroscopy
(XPS) analysis with timed Ar" bombardment, we inves-
tigated the differences in the oxygen ratio of TaO,/NP
TaO,/Ta layer between different voltage polarities. As
shown in Fig. 2g, the V; distribution and position of the
Ohmic-like contact change based on the polarity of the
applied voltages, which supports the suggested switching
mechanism. The asymmetric bipolar switching phenom-
enon of TaO,/NP TaO, memristor synapse can be
understood based on the shift in the Ohmic-like contact
driven by the change in the V; distribution in the NP
TaO, layer.

The intrinsic Schottky contact formed at the Pt/TaO,
(210 nm) interface results in sufficient suppression of the
sneak-current in the reverse bias region regardless of the
programming voltage (Fig. 2c). However, the sneak-
current level was significantly increased when a thinner
TaO, layer (<8 nm) was inserted between Pt and NP TaO,
(see Supplementary Information, Fig. S4). Therefore, the
thickness of the top TaO, layer determines the rectifying
properties and the sneak-current level of the TaO,/NP
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TaO, memristor synapse. Moreover, because the Schottky
barrier formed at the Pt/TaO, interface is also influenced
by the interfacial surface quality, it is important to fabri-
cate a uniform surface with low RMS to suppress unde-
sired pathways and lower the switching variability
(Fig. S5).

Long-term plasticity is regarded as essential to biologi-
cal synaptic functions, and has two forms, long-term
potentiation (LTP) and long-term depression (LTD), that
generally exhibit gradual potentiation and depression in
synaptic weight, respectively, depending on the input
stimuli.*>** To mimic LTP and LTD in the Pt/TaO,/NP
TaO,/Ta memristor synapse, we controlled the degree of
change in the synaptic weight by modulating the input
stimuli, as shown in Fig. 2h. When a potentiating input-
signal train consisting of 100 pulses of 10 V for 20 ms was
delivered to the top Pt metal of the memristor synapse
(i.e., pre-neuron), the synaptic weight begins to be
potentiated and the post-synaptic current (PSC) gener-
ated in the bottom Ta metal (post-neuron) gradually
increases (mimicking L'TP). In contrast, when a depres-
sing input-signal train consisting of 100 pulses at —10 V
for 20 ms was delivered to the pre-neuron, the synaptic
weight begins to be depressed and the PSC at the post-
neuron decreases (mimicking LTD). The change in the
PSC for both LTP and LTD is larger when the pulse width
is increased from 20 to 40 ms because of the larger change
in the V; distribution. This controllability provides input
flexibility for controlling the synaptic plasticity. The
device also exhibits operational stability for both LTP and
LTD under repeatable potentiating and depressing input
pulses (see Supplementary Information, Figs. S6, S7). We
also imitated the STDP characteristic that is associated
with the learning capability of the human brain**** (see
the inset in Fig. S8).

TaO,/NP TaO, memristor array

To verify whether the TaO,/NP TaO, memristor
synapse can suppress undesired neural signals of the
crossbar array, a 16 x 16 crossbar array was fabricated
using a shadow mask process and tested as a proof of
concept (Fig. 3a). The side length of the cell was 100 pm.
An additional selector on every node in the array is not
required, significantly reducing the complexity of fabri-
cation. The fabrication of the TaO,/NP TaO, crossbar
array is described in the Supplementary Information
(Fig. S9). As shown in Fig. 3b, the distributions and
magnitudes of the ON current (Ioy), OFF current (Iogg),
sneak-current (Ispear)) and  synapse-coupling value
(denoted by S.C) were statistically investigated (64 cells
among 128 cells). Ispeax is the current at —V, and S.C is
defined as Is,ea/lon, that is, the inverse of the non-
linearity value. Because Is,eqc determines the magnitude
of the undesired neural signals generated by neighboring
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Fig. 3 TaO,/NP TaO, memristor array. a Top-view SEM image of a 16 x 16 crossbar array. b Statistical histograms of the lon, lofr, fsneak and S.C for 64
cells in the arrays. ¢ Rearranged 4 x 16 distribution maps and (d) statistical histograms of lon, loe, lsneake @and S.C on a logarithmic scale, respectively.
The switching parameters (lon, lore, fsneak and S.C) were obtained after a DC voltage sweep of |Vs| = 10V for each cell. e I-V switching curves in the
selected 2 x 2 array; a selected cell (blue box) and unselected cells (red box). f, g Histograms of the OFF currents at V, =5V of the selected cell in the
2 x 2 array when the switching states of the unselected cells are in OFF or ON states

5 10

interconnected synapse cells, the S.C reflects the degree of
activation of undesired pathways in the array. Thus, the
Ispeax @and S.C in the memristor synapse should be as low
as possible. The Ion, Iorrs Isneals and S.C for the TaO,/NP
TaO, crossbar array were 2.87 +1.96 x 10°°A, 449+
336x1077 A, 4.61+£222x10 A, and 1.60 +0.74 x
10~*, respectively, for the 64 cells. The distribution maps
of each switching parameter show that our memristor
array exhibited relatively well-defined switching para-
meters with acceptable cell uniformity, as shown in
Fig. 3c. Figure 3d shows the statistical histograms of Ioy;,
Iorp Isneaw and S.C on a logarithmic scale, which
demonstrate that each parameter can be distinguished
(based on the distribution). From the selected 2 x 2
matrices within the 16 x 16 array, the I-V switching
characteristics for each cell were determined and a
crosstalk test was performed, as shown in Figs. 3e—g. Our
results confirmed that the OFF states of the selected cell
([1 x 1], shown in the blue box) can be correctly read after
programming regardless of the states (ON or OFF) of the
neighboring cells ([1 x 2], [2 x 1], and [2 x 2], indicated by
red boxes) (Figs. 3f, g). This occurs because the low S.C of
the TaO,/NP TaO, memristor synapse can effectively
deactivate the unintentional leakage paths; the Igyeqr
through the [2 x 2] cell in the reverse-bias direction is
significantly suppressed.

MNIST pattern recognition simulation

To explore the influence of undesired neural signals in
ANNSs, we simulated MNIST pattern recognition based
on the LTP and LTD fitting results of the TaO,/NP TaO,
memristor synapse (see Supplementary Information,
Fig. S10). Figure 4a shows the constituents of a single-
layer network for the typical MNIST pattern recognition
process,*** which simplifies the input/output class of the
biological neuron network. Figure 4a shows an example of
the recognition process for “3”. The single-layer network
consists of 784 input neurons (pre-neurons) and 10 out-
put neurons (post-neurons) fully connected by 784 x 10
= 7840 synaptic weights. The input pattern representing
the MNIST handwritten digit image (28 x 28 pixels) is
connected to each input neuron. The input signal x;
corresponding to each pixel index is individually scaled by
w;; all weighted inputs are delivered into the output
neuron in the form of Xw;x;. i and j are integer numbers
that range from 1 to 784 for i and from 1 to 10 for j. It is
assumed that the signals at the output neurons transmit in
the form of a sigmoid activation function y=f (Zw;x,),
where f=(1+e ™)' This activation function converts
the weighted sum into output signal y and acts as a
threshold function in a biological neuron. The 60,000
randomly ordered training images corresponding to the
MNIST handwritten digits from 0 to 9 are consecutively
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input neurons (yellow) and output neurons (green) are fully connected by synaptic weight (blue). b Diagram of a crossbar array mapped into ANNs.
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The output signals are integrated into the form of >w;x; at the output neurons of each row (green). ¢, d Diagrams of reconstructed ANN architectures
for two cases: (i) the case in which the undesired neural pathways (red lines) are not suppressed, and (ii) the fully suppressed case. e, g Reshaped
28'x 28 contour images of the final conductances (G;;* and G;;7) and synaptic weights (w;)) corresponding to “3" after 15 training epochs

corresponding to S.C=1 and S.C=0. f, h Confusion matrices for a classification test of the 10,000 MNIST handwritten digit images after 15 training

epochs corresponding to S.C=10and S.C=0

fed to the single-layer network (i.e., =6,000 images per
one-digit number). When a training image is processed,
all connected synaptic weights between the input and
output neurons are updated based on the delta rule,*® Aw;
j= nejx;, which is a supervised learning algorithm.”” 7 is
the learning rate that indicates how fast the synaptic
weights change and e = t—y is the error, where ¢ is a target
value that is determined by the input pattern. The training
process refers to one training epoch. After one epoch is

completed, another 10,000 images that were not used in
the above-described training process were tested. This
algorithmic approach to the single-layer network process
has often been utilized for simple handwritten digit
recognition. As shown in Fig. 4b, the single-layer network
corresponds to the crossbar array in which input and
output neurons intersect at artificial synapses. In the
network array, w;; is defined based on the conductance
difference between a pair of neighboring memristor
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synapses, ie, w;; = G,;'—G;; *® G,;" and G;;~ are the
conductances of two neighboring memristors connected
at the ith word and jth bit lines, respectively. w;;>0 and
w;; <0 represent the synaptic weights for excitatory and
inhibitory synapses, respectively. These two-memristor
synapses significantly improve the effectiveness of the
weight update in the crossbar array. The array imple-
ments vector-matrix multiplication and summation, in
which all weighted inputs are integrated into the output
neuron via Kirchhoff’s law and Ohm’s law in the form of
G wiand X' G, x> Then, Zw, ¢, =5 G, wi — £ Gy
and the activation function y =f (Xw;x;) are applied and
transmitted through circuit-based output neurons.**”°
Based on this approach, we simulated two cases: (i) the
case that the undesired neural signals are not suppressed
and (ii) the fully suppressed case. Figure 4c shows a simple
schematic network diagram for case (i), in which neural
signals through both desired (blue) and undesired (red)
pathways are considered. Each output signal generated
from the activation function is determined by all the
weighted inputs through the blue and red pathways.
Similar to the crosstalk signal in the array, the undesired
neural signals through the red pathways could largely be
generated at a high S.C. In contrast, in case of (ii), the
output is determined only by the weighted inputs through
the blue pathways (Fig. 4d). All synapses are independent
of each other (i.e., S.C=0).

To reflect the effect of undesired neural signals in the
ANNS, the sneak current corresponding to the S.C was
added to the generated PSC values for simplicity. For
example, if S.C ranges from 0 < S.C < 1.0, the red pathways
are activated, causing an increased weighted sum (Zw;x;
+ 211 ndesired) at the connected output neuron. In the case
of S.C = 1.0, the memristor synapse exhibits a symmetric
[-V switching profile regardless of the voltage polarity,
i.e., the sneak current is the same as the highest PSC (o)
of the V, scheme. In this case, the red pathways are fully
activated and the difference in the synaptic weights
between synapses almost disappears, as illustrated in
Fig. 4c. However, if S.C=0, the red pathways are fully
suppressed, which generates only Jw;x; at the output
neuron, as illustrated in Fig. 4d. The sneak current
becomes zero and each synaptic weight can be indepen-
dently programmed and updated, which is considered
ideal for ANNS.

Figures 4e—h show the simulation results of the pattern
recognition for SSC=1 and S.C=0 after 15 training
epochs. A detailed flow chart for one epoch is provided in
the Supplementary Information (Fig. S11). In both cases,
for the “3” input pattern, the final conductance (G;;" and
G;; ) and the synaptic weights (w;;) connected to the “3”
output neuron can be reshaped to a 28 x 28 array after 15
epochs (Figs. 4e, g). From the reshaped contour images
corresponding to Gi,j+, G;; , or w;; we can estimate
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whether “3” is well recognized or not. For S.C=1, the
reshaped images in the array do not correspond to the “3”
input pattern or other patterns, indicating failure (Fig. 4e).
For S.C =0, the reshaped images in the array correspond
to only the “3” input pattern, indicating success. Figs. 4f, h
show the confusion matrices that correspond to mis-
classification for S.C=1 and S.C=0 after 15 training
epochs, respectively. Based on the similarity of each out-
put signal to a target signal in terms of the individual
input digit pattern, the green saturation of an individual
tile in the confusion matrices can be determined. The
trained network that correctly recognizes all input pat-
terns will render only diagonal tiles in green. For S.C=
1.0, the randomly distributed tiles with different satura-
tions of green in the confusion matrix are shown in Fig. 4f,
indicating the failure of pattern recognition. For S.C =0,
the diagonal tiles are exclusively saturated green, as shown
in Fig. 4h, indicating the success of pattern recognition.
Using different S.C from O to 1 at 0.2 intervals, the single-
layer network consisting of TaO,/NP TaO, memristor
synapses was trained and tested for 15 training epochs.
Then, we estimated the accuracy of MNIST pattern
recognition for different S.C values and number of
training epochs, as shown in Fig. 5. The recognition
accuracy significantly improves as the S.C decreases, as
indicated by the red arrow in Fig. 5. Interestingly, the
accuracy does not further improve despite increasing the
number of training epochs, which indicates that the
magnitude of undesired neural signals constrains the
maximum accuracy of recognition in ANNs. Based on the
experimental average S.C (1.60 x 104 for the TaO,/NP
TaO, memristor synapse, the trained network achieved a

100 Accuracy (%)

0]
o

o

Accuracy (%)

ENCY

oo

Fig. 5 Evolution of the recognition accuracy for the MNIST pattern at
different S.C (from 0 to 1 with a 0.2 interval) and training epochs (up to
15). The TaO,/NP TaO, memristor synapse has 5.C = 1.60 x 1074

which is comparable to an accuracy of S.C=0
|\ J




Choi et al. NPG Asia Materials (2018) 10: 1097-1106

recognition accuracy of 87.63% after only three epochs
and 89.08% after 15 epochs. Notably, other requirements
for artificial synaptic devices can significantly affect the
learning capability in ANNS, such as the linearity of the
weight update (the nonlinearity of the spike-generation
process), multilevel states, dynamic range (ON/OFF
ratio), and device-to-device and cycle-to-cycle variation.
For example, the linearity of the weight update determines
the mapping degree of the synaptic weights in the algo-
rithms in the conductance of the device, which affects the
learning accuracy.>'” This value ranges from 0 to 1 and
should be zero for a perfectly linear weight update.
However, in the case of our memristive synapse, the lin-
earity of the weight update is 0.75, which should be
improved to achieve higher learning accuracy (Fig. S12).
Considering that more conductance states enable the
individual pattern to be more clearly distinguished, the
multilevel states and dynamic range are related to the
resolution capability of information storage for input
patterns.g’17 In addition, although the device-to-device
and cycle-to-cycle variations could cause uncertainty of
the weighted sum in the large-scale ANNs during the
learning process, a neuro-inspired network features fault-
tolerant computing capability.>*® This implies that the
network is less vulnerable to device and cycling variation,
and could be properly trained to some degree (Fig. S13).
Although the linearity of the weight update and the
switching window of the device require further improve-
ment for high-recognition accuracy (i.e., closer to that of
the human brain), our simulations provide a framework
for further research into homogeneous bilayer memristor
synapses consisting of non-porous and NP oxide layers
with different stoichiometry.

Conclusions

In summary, we fabricated a self-rectifying memristor
for an artificial synapse employing a Pt/TaO,/NP TaO,/
Ta stack on a SiO,/Si substrate that can effectively sup-
press the undesired neural signal in ANNs and mimic
essential synaptic functions. A potential switching
mechanism is suggested and discussed based on the shift
in the Ohmic-like contact site driven by the change in the
V, distribution in the NP TaO, layer under an electric
field and the intrinsic Schottky contact at the Pt/TaO,
interface. In addition, a 16 x 16 crossbar array consisting
of this memristor synapse for ANNs was implemented
and statistically evaluated; a crosstalk test was also per-
formed. The effect of undesired neural signals on the
accuracy of pattern recognition was simulated for differ-
ent S.C. We demonstrated that a trained network with an
experimental S.C = 1.60 x 10~ * can achieve a recognition
accuracy of 89.08% after 15 epochs for MNIST digit
images. Our results suggest that the rationally designed
TaO,/NP TaO, memristor synapse offers a novel synaptic
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platform that allows for the implementation of ANNs in
high-accuracy recognition and low-synaptic-coupling
applications.
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