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Abstract: A localization and tracking algorithm for an early-warning tracking system based on the
information fusion of Infrared (IR) sensor and Laser Detection and Ranging (LADAR) is proposed.
The proposed Kalman filter scheme incorporates Out-of-Sequence Measurements (OOSMs) to address
long-range, high-speed incoming targets to be tracked by networked Remote Observation Sites
(ROS) in cluttered environments. The Rauch–Tung–Striebel (RTS) fixed lag smoothing algorithm is
employed in the proposed technique to further improve tracking accuracy, which, in turn, is used for
target profiling and efficient filter initialization at the targeted platform. This efficient initialization
increases the probability of target engagement by increasing the distance at which it can be effectively
engaged. The increased target engagement range also reduces risk of any damage from debris of
the engaged target. Performance of the proposed target localization algorithm with OOSM and RTS
smoothing is evaluated in terms of root mean square error (RMSE) for both position and velocity,
which accurately depicts the improved performance of the proposed algorithm in comparison with
existing retrodiction-based OOSM filtering algorithms. The effects of assisted target state initialization
at the targeted platform are also evaluated in terms of Time to Impact (TTI) and true track retention,
which also depict the advantage of the proposed strategy.

Keywords: information fusion; Kalman filter; out-of-sequence measurements; Rauch–Tung–Striebel;
smoothing; state estimation; Time to Impact

1. Introduction

Detection and tracking antiship supersonic targets, such as sea-skimming missiles, are challenging
problems for any countermeasure and surveillance system [1]. Various detection sensors, such as
RADAR, LADAR, SONAR, and infrared, can be deployed for counteractions to defend against
high-speed incoming missiles. Multisensor data fusion is a promising approach to combine the data
of multiple sensors having similar or complementary characteristics [2]. Considerable research and
development have been carried out towards algorithm development for target dynamics estimation
based on information fusion from multiple sensor platforms [2–5]. Data fusion not only proves
useful in terms of estimation accuracy but also reduces susceptibility to Electronic Counter Measures
(ECM) by utilizing the benefits of different measurement principles. Despite the numerous advantages
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of multiple sensor-tracking systems, many practical problems arise in the actual deployment of
automated multiple-sensor systems. The issues that must be addressed in data-fusion techniques
include dissimilar measurement acquisition rates, resolution capability, and measurement accuracy of
the sensors [6].

Measurement acquisition rates differ widely depending on several variables. Therefore, when
fusing data from multiple sensors, there is a mismatch in measurement arrival time; for example, data
processed from an image processor will be more time-consuming compared to a radar signal being
processed. Measurement delays occur due to sensor diversity, transmission delay in the communication
network, and uncertainty in preprocessing times when large numbers of measurements are processed
in limited resources [6]. As a result, measurements from the same target appear at the fusion center
with varying random time delays, and measurements of such a kind are called out-of-sequence
measurements (OOSMs). In the OOSM scenario, the fusion center receives measurements produced at
a prior time. As explained earlier, this may occur if the measurement arrival was subject to unexpected
transmission delays when compared to the delays associated with the expected measurement arrival
time. The issue here is that of determining a process of including these OOSMs into a track that
has already been updated with a measurement at a later time. In recent years, many optimal and
suboptimal filtering techniques have been developed for the handling of single and multiple lag
OOSMs [7,8]. An important characteristic of all these OOSM filtering techniques is to compute state
estimates, correlative covariance and cross-covariance within the state and delayed measurement [7].

Numerous OOSM filtering techniques have been proposed in the past to incorporate arbitrarily
delayed target measurements in an effective manner. Although effective, most of these algorithms
do not consider a cluttered environment. This is mainly because of the complexity that accompanies
data-association techniques. An approach that takes advantage of the information filter recursions for
the OOSM update is proposed in Reference [9], which is a compromise between memory requirement
and estimation accuracy. OOSM filtering techniques based on EKF for nonlinear systems to deal with
multiple lag OOSMs are proposed in References [10,11]. The particle filter (PF) technique determining
the exact solution for the OOSM problem is developed in Reference [12]; however, the technique
is numerically very complex. A PF-based solution to the OOSMs with arbitrary lag is presented in
Reference [13] for scenarios with bearings-only tracking. The performance of the proposed technique
for mildly nonlinear tracking problems is similar to that of an EKF. The performance of any PF-based
approach can be further improved by other techniques developed in the literature [14] at the cost of
increased computational complexity. The performance of a PF-based technique may be optimized
in the computational sense using a cost-reference particle filter approach [15], which is suitable for
implementation with parallel computing devices but would not be suitable for problems with scarce
hardware resources. Likewise, the performance of PF- and KF-based OOSM filtering techniques
for multiple lag OOSMs are compared in [16]. Numerical analysis shows that the KF-based OOSM
filtering technique is optimal, and a similar filtering performance can be achieved as for the KF
with in-sequence measurements. Two general techniques to update the current state in a globally
optimal and suboptimal manner for solving single- and multiple-lag OOSM problems are developed in
Reference [17]. In Reference [18], an algorithm is proposed to estimate target position by incorporating
arbitrary lag OOSMs using grey relational analysis, which is a computationally intensive technique
and involves more CPU time in case of multilag delayed observations. In Reference [19], an idea is
presented to augment the history of states to solve a multilag OOSM problem. The technique described
in Reference [19] provides an optimal solution for cases when measurement origin time matches one of
the predefined discretized time steps [20]. In Reference [21], an exact solution to the OOSM problem is
derived by developing an efficient variant of an augmented state Kalman filter (AS-KF) called Selected
AS-KF (SAS-KF). Likewise, in Reference [22], a multirate filter is designed to track maneuvering and
nonmaneuvering targets in an environment of OOSM reporting.

OOSM filtering techniques, in most of the cases, are build on retrodiction. This implies that the
current track is predicted backwards to the originating time of the OOSM measurement [8,23,24].



Sensors 2018, 18, 4043 3 of 20

An optimal retrodiction-based OOSM filtering algorithm called A1 algorithm is presented in
Reference [8]. This technique is optimal and offers an exact solution only for a scenario where the
OOSM arrives between the previous two in sequence and consecutive measurements. The suboptimal
solution to this particular problem derived in References [6,8] is referred as B1 algorithm. A solution
is provided in Reference [23] to the l-lag OOSM in the framework of the B1 algorithm, known as
the Bl algorithm. In the Bl algorithm, associated covariances are stored for the computation of filter
gain from all past sampling intervals. In Reference [24] the optimal and suboptimal algorithms called
Al1 and Bl1 are established to solve multiple lag OOSMs in one step. The aforementioned OOSM
filtering algorithms can incorporate single- as well multiple-lag OOSMs with a considerable reduction
in estimation error.

For better accuracy, state estimates can be improved further by employing smoothing techniques.
These techniques utilize measurements received at intermediate and current scans to improve state
estimates at past scans [25]. In Reference [26], the multilag OOSM filtering technique is presented
under the framework of fixed lag smoothing. The technique presented in Reference [26] involves state
augmentation to include all states up to the first estimated, which makes it computationally inefficient.
To limit the computational complexity, an algorithm is proposed in Reference [20], in which RTS
smoother is inherently embedded in Accumulated State Density (ASD) filter. Likewise, in Reference [7],
a generalized RTS fixed interval smoothing framework is introduced in the OOSM filtering algorithm
to incorporate randomly delayed measurements. Recently, the authors in Reference [27] propose an
interesting alternative to conventional RTS-based smoothing techniques, which require the target
dynamic model information to be accurately known; the fitting for the smoothing method presented in
Reference [27] releases the necessity of exact target dynamics and fits the distant estimates given over
discrete time by using a function of continuous time, which is then used to infer the state backward
for any time instants within the effective fitting period. The simulation experiments show promising
results compared to existing smoothing algorithms.

Any nonpersistent measurement that does not originate from a target is referred to as a clutter.
The clutter count and spatial distribution are random entities. A general practice in the target-tracking
community, when not dealing with clutter estimation, is to assume a homogeneous clutter density
that is a priori known [28]. These clutter measurements complicate the situation by introducing
uncertainty about the origin of a specific measurement, i.e., whether it belongs to a certain target or not.
This problem is addressed by data-association algorithms. Several data-association algorithms exist
for single-target tracking, such as nearest neighbor (NN), global NN, probabilistic data association
(PDA), integrated PDA, multiple hypothesis tracking (MHT), and integrated track splitting (ITS) [6,28].
While the PDA, IPDA, MHT, and ITS provide the optimal solution, the NN is the least computationally
demanding algorithm. It simply assumes that the closest measurement to the predicted track
measurement is the one belonging to the target. Due to this computational efficiency, the current
algorithm employs this technique over the optimal but computationally intensive algorithms.

In this paper, existing optimal Al1 and suboptimal Bl1 OOSM filtering algorithms based on
retrodiction have been proposed along with the smoothing framework to incorporate single- and
multiple-lag OOSMs in a cluttered environment. Unlike conventional algorithms, which need multiple
steps to update the estimated state, the smoothing enhancement with OOSMs of arbitrary lags are
carried out in a single step. Furthermore, this paper presents the additional benefits of smoothing for
the purpose of target profiling from several networked Remote Observation Sites (ROSs) along with
launch point estimation of high-velocity projectiles. The estimation accuracy of the proposed scheme
is demonstrated using computer simulations. The effectiveness of the proposed scheme is validated in
terms of RMSE in comparison with existing Al1 and Bl1 OOSM filtering algorithms. Simulations are
also carried out for target-state estimation, time-to-impact calculation, and track-retention statistics by
the platform protection system of the targeted platform.

The paper is structured as follows: In Section 2, target localization using LADAR and IR with
OOSMs is discussed. In Section 3, the problem is formulated and the measurement model of both
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sensors is illustrated. In Section 4, Estimation and Nearest Neighbor filter recursion equations are
explained. Section 5 briefly describes the OOSM filtering algorithms in a cluttered environment with
RTS smoothing enhancement. Section 6 describes the advantage of such a system by simulating the
platform protection system’s estimation algorithm with and without assisted initialization. Simulation
results are presented in Section 7. Finally, Section 8 concludes the proposed work.

2. Target Localization Using LADAR and IR

This paper considers the information fusion of an LADAR and IR sensor installed on the same
platform, separated by a small baseline distance. An assumption is made that both sensors share
the same field of view and register the same target in its field of view. The measurements observed
from an IR sensor take greater preprocessing time and are not be available at every scan. On the
other hand, the measurements from LADAR arrive at the fusion center with a negligible amount of
preprocessing time delay as shown in Figure 1. This situation leads to the arrival of IR measurements
at the fusion center after the target trajectory state is updated with the measurements observed from
LADAR. This creates the problem of including OOSMs into the current state estimate that has already
been updated.

Figure 1. Scenario of out-of-sequence measurements.

The scenario and use of the algorithm is depicted in Figure 2. A high-speed sea-skimming missile
is launched toward the protected platform from a distance. There is always little time between detection
and time to impact when tracking a supersonic target in cluttered environment. In the proposed EWS,
trajectory of the threat is estimated and smoothed after detection by a ROS. The target trajectory along
with accurate time to impact and other parameters of interest are provided in advance to the targeted
platform. Thus, the proposed technique helps the ROS in serving as an early-warning system for
the targeted platform in practical situations, i.e., tracking with multiple sensors with OOSM and a
cluttered environment.
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Figure 2. Working of the proposed system with multiple Remote Observation Sites (ROSs) and the
targeted platform.

3. Problem Formulation

The target state evolves from time tk−1 to time tk according to the mathematical expression

Xk = Gk,k−1Xk−1 + Vk,k−1 (1)

where Gk,k−1 is the state transition matrix form time tk−1 to time tk, and Vk,k−1 is Gaussian-distributed
process noise. Xk is the state vector that consists of position and velocity components of target in
Cartesian co-ordinates. The state vector at any discrete instance k can be represented as

Xk = [xk yk zk ẋk ẏk żk ]
T (2)

State transition matrix G can be defined as

G =

[
I3×3 TI3×3

O3×3 I3×3

]
(3)

Covariance matrix Q that defines process noise Vk,k−1 can be expressed as

Q = q

[
T3

3 I3×3
T2

2 I3×3
T2

2 I3×3 TI3×3

]
(4)
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where I3×3 is a 3× 3 identity matrix, O3×3 is 3× 3 zero matrix, q is the power spectral density of
the process noise, and T is the sampling time. It is assumed that the OOSM arrives anywhere in the
following interval:

tk−l ≤ τ < tk−l+1 (5)

where τ represents the OOSM arrival time, k represents the scan number, and l denotes the lag.
The measurement equation can be represented as:

Zs,k = hk(Xk) + wk (6)

where Zs,k denotes the measurement from sensor s at time k, h is the nonlinear measurement function,
and wk is the measurements noise of the sensor. Process noise Vk and measurement noise wk are
assumed to be mutually uncorrelated, white, zero mean with covariances Qk and Rk, respectively.
According to Equation (1), the state dynamic equation for the OOSM case in can be expressed as:

Xk = Gk,∆X∆ + Vk,∆ (7)

where ∆ is the discrete time representation of τ. Equation (7) can be rewritten backward as

X∆ = G∆,k[Xk −Vk,∆] (8)

where G∆,k = (Gk,∆)
−1 represents the backward transition matrix. The estimated state and covariance

matrix can be expressed as:

Xk|k = E[Xk|Zk], Σk|k = cov[Xk|Zk] (9)

where Zk is the set of in-sequence measurements observed from LADAR and is represented as

Zk = {z(j)}k
j=1 (10)

Subsequently, the OOSM from time τ that can be denoted in discrete time as ∆,

z∆ = h∆(X∆) + w∆ (11)

Measurement z∆ arrives at the fusion center after state estimate Equation (9) has been calculated.
The aim is to update this estimate with delayed measurement Equation (11), by calculating

Xk|∆ = E[Xk|Z∆], Σk|∆ = cov[Xk|Z∆] (12)

where
Z∆ = {Zk , z∆} (13)

Sensor Measurement Mode

The sensor–target geometry in a 3D Cartesian co-ordinate system is clearly depicted in Figure 3.
The measurements of LADAR consist of range, azimuth, and elevation angle, whereas the measurement
model of IR sensor consists of bearing only measurements, i.e., azimuth and elevation. The LADAR
measurements are:

rl
k =

√
(xt

k − xl
k)

2
+ (yt

k − yl
k)

2
+ (zt

k − zl
k)

2
+ wl,r

k (14)

ηl
k = tan−1 yt

k − yl
k

xt
k − xl

k
+ wl,η

k (15)
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εl
k = tan−1 zt

k − zl
k√

(xt
k − xl

k)
2
+ (yt

k − yl
k)

2
+ (zt

k − zl
k)

2
)

+ wl,ε
k (16)

where rl
k, ηl

k, εl
k are the target range, azimuth, elevation angles, respectively. In the same order,

the measurement noise for these parameters are represented by wl,r
k , wl,η

k , and wl,ε
k . Superscript l here

denotes the measurements from LADAR. For the LADAR case, the measurement noise covariance
matrix can be expressed as:

Rl
k = diag(σ2

rl
, σ2

ε l
, σ2

ηl
) (17)

IR measurements consist of the target azimuth and elevation angles and can be written as:

ηir
k = tan−1 yt

k − yir
k

xt
k − xir

k

+ wir,η
k (18)

εir
k = tan−1 zt

k − zir
k√

(xt
k − xir

k )
2
+ (yt

k − yir
k )

2
+ (zt

k − zir
k )

2
+ wir,ε

k (19)

Superscript ir represents IR sensor measurements and ηir
k , εir

k are the measured azimuth and
elevation angles with additive noise represented by wir,ε

k and wir,ε
k , respectively. The measurement

noise covariance matrix of IR is
Rir

k = [σ2
εir

, σ2
ηir
]T (20)

Figure 3. Scenario of out-of-sequence measurements.

4. State Estimation in Cluttered Environments

The Kalman filter is an optimal and recursive algorithm for linear state estimation [29,30]. Prior
to fusion, the nonlinear measurements of LADAR are transformed to a Cartesian co-ordinate system,
so that linear KF can be employed for state estimation until OOSMs are not received at the fusion
center. As indicated from References [31–33], converting a nonlinear measurement to the state space
yields a non-Gaussian uncertainty and conversion bias; therefore, the critical issue is to determine
the unbiased mean and covariance of the observation after conversion. In this paper, we utilize the
unbiased conversion approach proposed in Reference [34] to obtain the unbiased mean and covariance
of converted measurement in 3D Cartesian space. This debiasing maethod is an exact solution that
derives exact compensation for the multiplicative bias and thus shows good consistency and robustness
on the statistics of cosine of the angle measurement errors, and is able to apply to non-Gaussian errors
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as well. For the sake of brevity, the details on the derivation and calculation of the unbiased mean and
covariance are omitted here. Interested readers can refer to Section 2B in Reference [34].

The NN filter [6] is employed for target tracking in a cluttered environment. The NN algorithm is
based on a few assumptions. The first assumption is that a true target is always detectable; the second
is that the measurement nearest to the predicted measurement belongs to the target, and all other
measurements originate from the clutter. The third is regarding the white Gaussian nature of the
measurement noise. The prediction equations of the linear KF can be mathematically expressed as:

Xk|k−1 = Gk|k−1Xk−1|k−1 + Vk (21)

Σk|k−1 = Gk|k−1Σk−1|k−1GT
k|k−1 + Qk (22)

The measurement selection process follows these equations, where measurements are selected
based on the NN criterion as:

zk(i) = argminzk(j)[zk(j)− HkXk|k−1]
TSk
−1[zk(j)− HkXk|k−1] (23)

where i represents the ith track following a target, and j ∈ [1, ..., mk] and mk represent all the
measurements falling in the validation gate, whereas the estimation part, as given in the literature, can
be written as:

Sk = HkΣk|k−1Hk
T + Rk (24)

Kk = Σk|k−1Hk
TSk
−1 (25)

Xk|k = Xk|k−1 + Kk(zk(i)− HkXk|k−1) (26)

Σk|k = (I − Kk Hk)Σk|k−1 (27)

where Xk|k−1 and Σk|k−1 are the predicted state estimates and corresponding covariance, Xk|k and Σk|k
are estimated state vector and covariance, and Sk, Kk represent the innovation covariance and Kalman
gain, respectively. Measurement matrix H is linear and can be defined as:

Hk =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (28)

5. OOSM Filtering Algorithms in Clutter With Generalized Smoothing Framework

In this paper, an RTS fixed lag backward smoother is inherently integrated in the framework
of existing OOSM and NN algorithms to further improve the estimation and tracking performance.
The complete pseudocode of the proposed localization algorithm is shown in Table 1.

Table 1. Typical Out-of-Sequence Measurement (OOSM) scenario for one, three, and five lags.

scene 1 Sensor Number: 1 1 2 1 2 1 2 1 2 1 2 1 2 1

Measurement arrival time: 0 5 2.5 10 7.5 15 12.5 20 17.5 25 22.5 30 27.5 35

scene 2 Sensor Number: 1 1 1 1 2 1 2 1 2 1 2 1

Measurement arrival time: 0 5 10 15 2.5 20 7.5 25 12.5 30 17.5 35

scene 3 Sensor Number: 1 1 1 1 1 1 2 1 2 1

Measurement arrival time: 0 5 10 15 20 25 2.5 30 7.5 35
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5.1. Al1 Algorithm with NN and Smoothing Framework

The Al1 algorithm is optimal because it incorporates the retrodicted process noise of the prediction
cycle. The algorithm is designed for a multilag OOSM problem but consists of only one step, thus
reducing the memory requirement. The key concept behind the approach that can provide a one-step
solution to multilag OOSM problems is completely derived in Reference [24] in which all measurements
later than OOSM are replaced by an equivalent measurement. The major steps of the algorithm are
state retrodiction, measurement retrodiction, and filter-gain calculation that is required to update the
current state with OOSM. The retrodiction of the state at k to ∆, is given by:

X∆|k = G∆,k[Xk|k −Qk,∆(S∗k )
−1V∗k ] (29)

Covariance of equivalent innovation S∗k at k can be calculated as:

S∗k = Σk|k−l + R∗k (30)

The inverse of S∗k that is numerically computable is given by:

(S∗k )
−1 = (Σk|k−l)

−1 − (Σk|k−l)
−1[(Σk|k−l)

−1 + (R∗k )
−1]−1(Σk|k−l)

−1 (31)

v∗k is the equivalent innovation at k that can be defined as:

v∗k = (W∗k )
−1[Xk|k − Xk|k−l ] (32)

where R∗k is the measurement noise covariance matrix and W∗k is the filter gain for the equivalent
measurement, as derived in Reference [23], is:

(R∗k )
−1 = (Σk|k)

−1 − (Σk|k−l)
−1 (33)

W∗k = (Σk|k)(R∗k )
−1 (34)

The state retrodiction-associated covariances can be calculated as:

Σvv(k, ∆|k) = Qk,∆ −Qk,∆(S∗k )
−1Qk,∆ (35)

Σxv(k, ∆|k) = Qk,∆ − Σk|k−l(S
∗
k )
−1Qk,∆ (36)

where Σvv(k, ∆|k) is the process noise covariance associated with state retrodiction, and Σxv(k, ∆|k)
is the cross-covariance between the state from discrete time ∆ k to k. From Equations (35) and (36),
the filter-calculated covariance for a retrodicted state can be calculated as:

Σ∆|k = G∆,k[Σk|k + Σvv(k, ∆|k)− Σxv(k, ∆|k)− Σxv(k, ∆|k)T ]GT
∆,k

(37)

Subsequently, the retrodicted OOSM can be defined as:

z∆|k = Hir
∆
(Xk|k)X∆|k (38)

The corresponding innovation covariance associated with a retrodicted OOSM is given by:

S∆ = Hir
∆
(Xk|k)Σ∆|k(Hir

∆
(Xk|k))

T + Rir
∆

(39)

The covariance between the current state at time k and the retrodicted OOSM can be expressed as:

Σxz(k, ∆|k) = [Σk|k − Σxv(k, ∆|k)]GT
∆,k(Hir

∆
(Xk|k))

T (40)
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The state can be updated by computing gain W∆,k by the equation

W∆,k = Σxz(k, ∆|k)(S∆)
−1 (41)

Current state estimate Xk|∆ can be updated using the OOSM z∆ by the mathematical equation
given as:

Xk|∆ = Xk|k + W∆,k[z∆ − z∆|k] (42)

The covariance associated with updated state Xk|∆ can be calculated as:

Σk|∆ = Σk|k − Σxz(k, ∆|k)(S∆)
−1Σxz(k, ∆|k)T (43)

Measurement matrix Hir
∆
(Xk|k) is nonlinear due to IR nonlinear measurements, and can be

expressed as a Jacobian matrix that can be defined as:

Hir
∆ (Xk|k) =


∂εir

k
∂x

∂εir
k

∂y
∂εir

k
∂z 0 0 0

∂ηir
k

∂x
∂ηir

k
∂y 0 0 0 0

 (44)

Backward state transition matrix G∆,k can be defined as:

G =

[
I3 (−Tl)I3

O3 I3

]
(45)

Fused estimates Xk|∆ and covariances Σk|∆, calculated by Equations (42) and (43), are applied
to the RTS backward recursions that are embedded in the framework of the Al1 algorithm. The RTS
backward recursions can be mathematically expressed as:

Gk = Σk|∆ GT
k Σ−1

k+1|∆ (46)

Xk|k = Xk|∆ + Gk(Xk+1|k − Xk+1|∆), k = M− 1, ....., 0 (47)

Σk|k = Σk|∆ + Gk(Σk+1|k − Σk+1|∆)G
T
k (48)

where Gk is the smoother gain matrix, Xk|k and Σk|k represent the smoothed target state and the
covariance estimates of the kth time step, respectively. M represents the final time step.

The NN algorithm is incorporated in this scenario since the environment is assumed to be cluttered
in the IR case, too. Equation (23) can be modified in this case by replacing Xk|k−1 by z∆|k and S−1

k by
S∆, obtained by Equation (39). A number of necessary conditional expressions and constructs are used
and incorporated in the NN filter framework for practical reasons.

5.2. Bl1 Algorithm with Smoothing Framework

The Bl1 algorithm is suboptimal because it does not incorporate the retrodicted process noise.
The only difference between optimal algorithm Al1 and suboptimal algorithm Bl1,is that the former
provides an exact solution, whereas the latter an approximate solution. The retrodiction from the
current state at k to ∆ is given as:

XB
∆|k = G∆,kXk|k (49)

The covariances that are associated with state retrodiction can be expressed as:

ΣB
vv(k, ∆|k) = Qk,∆ (50)
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where the rest of the equations for the Bl1 algorithm with a smoothing framework are the same as
Equations (36)–(48).

6. Assisted State Initialization (ASI)

Once the target enters detection range of the platform under threat, the countermeasure system
installed in the platform starts estimating the target trajectory for effective engagement. The tracking
system of the targeted platform estimates target trajectory in an Earth-Centered Earth-Fixed (ECEF)
co-ordinate system with the z-axis along Earth’s rotation axis, and the east–north–down co-ordinate
system as shown in Figure 4 [35]. This choice of co-ordinate systems is made so that target state
estimation at the ROSs can be easily translated for the targeted platform’s tracking system.

Figure 4. Earth-Centered Earth-Fixed co-ordinate system.

Target dynamics are represented is a similar manner as in Section 2. However, in order to measure
the performance of the targeted platform’s tracker with and without assisted track initialization,
the target state and Time to Impact (TTI) were estimated. Resultant velocity Ṙ is computed from the
estimated state vector and can be mathematically written as:

Ṙ =
√
(ẋP

k|k)
2 + (ẏP

k|k)
2 + (żP

k|k)
2 (51)

where ẋP
k|k, ẏP

k|k, and żP
k|k represent the estimated velocity of the target in Cartesian coordinates at the

platform. Resultant velocity Ṙ is chi-distributed with three degrees of freedom and variance, equal to:

σ2
Ṙ = σ2

ẋẏż(3π − 8)/π (52)

The resultant TTI is also computed and can be mathematically computed as:

TTI =
√
(xP

k|k)
2 + (yP

k|k)
2 + (zP

k|k)
2/Ṙ (53)

with xP
k|k, yP

k|k, and zP
k|k being the estimated target position in Cartesian co-ordinates. The TTI is used to

prove the efficacy of the proposed system. The tracking algorithm was the same as in ROSs’ case i.e.,
NN, whereas statistics of the sensor and surveillance area are given in the Simulation Study section.

7. Simulation Study

For both velocity and position, the performance of both the proposed localization and tracking
algorithm is compared with the optimal Al1 and suboptimal Bl1 algorithm in a cluttered environment,
and is presented in the form of RMSE. The simulation setup considered in this paper is that two sensors
(LADAR and IR) are separated by a negligible distance of 0.5 m, and the sensors’ position is defined by
position vectors [0,0,10] for LADAR and [0,0,10.5] for IR in the body frame. The target was launched
from a distance of 50,000 m, and was moving with constant velocity of 1000 m/s, aimed toward the
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targeted ship. The ROS estimates the target position for 40 s of its flight. The remaining portion of
the trajectory is estimated by the targeted platform with assisted state initialization. The standard
deviation of both sensors is defined by σl

r = 2.5 m, σl
ε = σl

η = 12 mrad for LADAR, and σi
εr = σi

ηr = 5.7
mrad for IR, as given in Reference [1]. The RADAR at the targeted platform has the same parameters
as that of the LADAR system.

The measurements from both sensors arrive in such a way that measurements from LADAR are
in sequence, whereas a random number of IR measurements are out of sequence with delays of one,
three, and five lags. In Table 2, three scenarios are presented. With each measurement, both sensors
also provide the time record of the measurement taken. As LADAR measurements are taken at each
instant, conventional KF makes the updated state estimate and relevant covariance available. By using
the delayed measurements based on optimal or suboptimal OOSM filtering algorithms, the existing
target state may possibly be updated. The clutter density for all the sensors, i.e., LADAR, IR, and the
RADAR at the targeted platform is ρ = 1.0× 10−5/scan/m2, where the clutter follows a uniform
distribution and the false measurement count satisfied a Poisson distribution. The probability of target
detection is fixed at 0.9 through out the experiment.

The experiment consisted of 500 Monte Carlo runs, with each run consisting of 391 scans.
For velocity and position, simulation results of the suboptimal and optimal algorithms for both
single- and multiple-lag OOSMs in a cluttered environment are presented in Figures 5–8 for both
position and velocity. The performance of both the OOSM filtering algorithms is also compared to
the sequentially obtained readings from IR and LADAR presented in Reference [2]. Based on the
results shown in Figures 5–8, it is evident that, in terms of RMSE, both algorithms have improved
performance estimation. During state retrodiction, the optimal Al1 algorithm contains the effects of
process noise; however, suboptimal algorithm Bl1 ignores the process noise during state retrodiction.
For multiple-lag OOSMs, such as three and five lags, the RMS error value of both algorithms increases.
These RMS error values are presented in Figures 5–8. In Tables 2 and 3, the computational complexity
for algorithms Al1 and Bl1 is presented for different lag values and based on the information presented
in the table. It is clear that the computational complexity of Bl1 algorithm is less than that of the Al1
algorithm. For multiple-lag OOSMs, computational complexity value increases for both algorithms.
From the simulation results, it is observed that performance estimation is identical for both algorithms;
however, practical implementations and system requirements are also an important factor for algorithm
selection.

Table 2. Execution time of the Al1 algorithm in a Nearest Neighbor (NN) filter framework for
different lags.

Execution Time (s)

Lag Scans = 391, Runs = 500 Per Scan

1 33.5 171.3 µ

3 36.2 185.2 µ

5 40.7 208.2 µ

Table 3. Execution time of the Bl1 algorithm in an NN filter framework for different lags.

Execution Time (s)

Lag Scans = 391, Runs = 500 Per Scan

1 30.8 157.5 µ

3 34.5 176.5 µ

5 36.1 184.6 µ
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Figure 5. Root mean square error (RMSE) in position estimate for the Al1 algorithm.
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Figure 6. RMSE in velocity estimate for the Al1 algorithm.
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Figure 7. RMSE in position estimate for the Bl1 algorithm.
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Figure 8. RMSE in velocity estimate for the Bl1 algorithm.

In the proposed algorithm, RTS fixed-lag smoothing enhancement is performed in the filtered
estimates to further improve the estimation accuracy. In each simulation run, the fixed lag of four
and seven scans was considered, and a batch of four and seven scans was formed. The eldest
measurement scan was replaced with new measurement scan in each cycle. For a fixed lag value
of N = 4, the measurement scans for the first and second batch are j = 4, 3, 2, 1, and j = 5, 4, 3, 2,
respectively, and so on. For fixed value N = 7, measurement scans for the first and second batch are
j = 7, 6, 5, 4, 3, 2, 1, and j = 8, 7, 6, 5, 4, 3, 2, and so on.

To limit smoothing delay, an RTS smoothing algorithm that works back in time was implemented
in batch form. From the previous examples of fixed lag N = 4 and N = 7, it is clear that the first output
was obtained at j = 1 as the algorithm ran for four times for N = 4, and seven times for N = 7, until
the processing of the last batch and achievement of smooth output. At each batch processing, a new
smoothed output is obtained. Similarly, the same approach is to be followed for fixed lag N = 7. In this
case, each time the algorithms run for seven times until the processing of last batch and a smoothed
output is obtained.

To evaluate the performance of the proposed algorithm with smoothing lag (N = 4, 7) for
one, three, and five lag OOSMs, the experimental statistics were kept as previous. The simulation
results related to the comparison of proposed algorithm with Al1 algorithm for position are shown in
Figures 9–11. The velocity estimation results were omitted since they do not provide a clear picture of
the algorithm performance. Similarly, simulation results comparing algorithm Bl1 and the proposed
algorithm are displayed in Figures 12–14. From the simulation results, the proposed algorithm has
been found with better state estimates in the form of reduced RMSE as compared to the existing
algorithms. It has also been observed from the simulation results that, as smoothing lag increases,
RMSE decreases in terms of velocity and position with increased computational delay. The estimated
range rate and TTI with and without ASI are presented in Figures 15 and 16 along with the respective
error bounds on range-rate estimate. The results depict the efficacy of the proposed algorithm. It can
be observed that there is a 2.5 s advantage to the proposed system when compared with standard state
initialization techniques or without ROS feedback. The tracking performance of the filter was also
improved with ATI.
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Figure 12. RMSE in position estimate for one-lag OOSM.
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Figure 13. RMSE in position estimate for three-lag OOSM.
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Figure 16. Estimated time to impact at targeted ship’s estimator with and without ASI.

The track birth or track-initialization process based on two-point differencing [6] is implemented
in the current scenario both at the ROS and the targeted platform tracker. Although single-point track
initialization is a much simpler approach since it only requires measurements from the current scan,
but the tracks thus formed have no prior information of speed. This lack of information results in
a larger gate in the subsequent scan, resulting in a higher number of measurement selections that
is not desirable, especially in a scenario with heavy clutter. The two-point differencing approach
uses measurements from two consecutive scans for track initialization. This differencing is carried
out with all the measurements from the previous scan to the current one; thus, track initialization
is based on measurements at the previous scan. A rectangular validation gate that is centered on
previous measurements is created with the dimensions of the gate with gating unity probability equal
to 2(VmaxT + 2

√
diag(R)) [28]. Where Vmax is the maximum velocity of the target of interest, T is the

sampling time, and R is the measurement covariance matrix.
After the first two scans, any measurement falling in the validation gate of a track is not considered

for the track-initialization process. When two or more tracks share a common measurement history for
four consecutive scans, these tracks are merged. Similarly, a track is considered lost if the estimation
error exceeds five times that of the measurement noise standard deviation.



Sensors 2018, 18, 4043 18 of 20

The simulation in case of the targeted platform tracking system consisted of only 30 scans with
the Monte Carlo runs same as in ROS tracking case. A total of five false tracks were reported in both
the assisted and nonassisted mode. However, true track retention was much better in the case of ATI,
with a total of 50 lost tracks at the final scan as compared to 84 in the case of no feedback from the ROS,
which accounts to a 7% improvement in track retention.

8. Conclusions

This paper considers the data fusion of a LADAR with IR sensor by incorporating OOSMs
to estimate target trajectory and state dynamics of high-speed incoming sea-skimming missiles in
a cluttered environment. Optimal and suboptimal OOSM filtering algorithms were incorporated
in an NN filter framework to handle single- and multiple-lag OOSMs while tracking the target.
A smoothing technique is embedded in the proposed algorithm to further improve the estimation
accuracy for assisted track initialization, thus making the tracking system capable enough to deploy
countermeasures at an early stage against various high-velocity incoming targets. Monte Carlo
simulations clearly demonstrate the improved tracking performance of the proposed algorithm, with a
considerable reduction in RMSE and more response time for the countermeasure system as a result.
Track retention of the targeted plaform’s tracking system also improved from 83% in the case of missing
ROS feedback to 90% in the case with ATI.
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