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Abstract

Stimuli-responsive colorimetric sensors are promising for various industrial and medical applications due to the
capability of simple, fast, and inexpensive visualization of external stimuli. Here we demonstrate a thermoresponsive,
smart colorimetric patch based on a thermoresponsive plasmonic microgel embedded in a stretchable hydrogel film.
To achieve a fast and efficient thermoresponsive color change, raspberry-shaped plasmonic microgels were fabricated
by decorating gold nanoparticles (AuNPs) on poly(N-isopropylacrylamide) (PNIPAM) microgels, which exhibit
reversible and strain-insensitive color shifts (between red and grayish violet) in response to a temperature change. The
smart colorimetric patch containing a plasmonic microgels exhibits a significant extinction peak shift (176 nm) in a
short time (1 s), with a temperature-sensing resolution of 0.2 °C. Moreover, the transition temperature of the plasmonic
microgel can be finely tuned by additives and comonomers, so that the exquisite temperature visualization can be
conducted over a wide temperature range of 25-40 °C by assembling plasmonic microgel films with different
transition temperatures into an array patch. For proof-of-concept demonstrations, a freestanding smart colorimetric
patch was utilized as a spatial temperature scanner and a colorimetric thermometer for a thermoresponsive actuator,
which is potentially applicable in smart, wearable sensors and soft robotics.

Introduction
Wearable health-care devices enable continuous health

including metal nanowires on a flexible substrate?, con-
ductive fillers in an elastomeric matrix’, and metal

monitoring and offer instructive health-care information
and record data for physical activity, electrocardiogram,
body temperature, pH of sweat, and ultraviolet (UV)
light"”. Among these parameters, temperature is one of
the main vital signs and is the most essential parameter
for the diagnosis of the condition of the human body”. For
example, body temperature provides information about
health risks such as infections, inflammations, and anti-
genic reactions’. Different types of temperature sensors,
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nanoparticles in an organic semiconductor film® have
been developed to resolve the limitations of traditional
mercury- and infrared-based thermometers such as
rigidity, safety concerns, battery life, and cost issues.
However, recently developed temperature sensors remain
limited for wearable device applications due to complex
fabrication steps, relatively bulky analytical instrumenta-
tion, and the requirement of an external power source.
Colorimetric sensors have the competitive advantages of
being cost-effective and easy detection of stimuli without
requiring complex and expensive analytical instruments’.
There are many candidates for colorimetric sensors, such
as photonic crystals®, thermochromic dye molecules’, and
liquid crystals'®. However, these technologies still show
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limitations, including angle-dependent color differences,
short fluorescence lifetime, and the need for an external
electric field. On the other hand, plasmonic nanos-
tructures can overcome these limitations and display a
wide range of colors via the control of different plasmonic
materials, geometries, and cluster structures'"'?, The
attractive colors of plasmonic nanostructures arise from a
localized surface plasmon resonance (LSPR), which is the
collective oscillation of conduction electrons in metallic
nanoparticles when excited by an incident light'>. Addi-
tionally, plasmon coupling-induced colors can show a
remarkable shift when interparticle distances are finely
tuned'*.

To control the interparticle distances for plasmonic
nanoparticles under thermal stimuli, thermoresponsive
colorimetric sensors have been developed by combining
plasmonic nanoparticles with thermoresponsive poly(N-
isopropylacrylamide) (PNIPAM) hydrogels>™"”. The
PNIPAM hydrogel has a lower critical solution tempera-
ture (LCST) of 32-34°C, which is close to the tempera-
ture of the human body and exhibits a significant and
reversible volume change (more than 18 times in the case
of our PNIPAM microgels). Therefore, it has been widely
used in many applications, such as actuators, biosensors,
and drug-delivery vehicles'®™'. Moreover, several studies
have been carried out that employ the thermoresponsive
nature of PNIPAM to fabricate colorimetric sensors by
combining plasmonic nanoparticles with PNIPAM
hydrogels. For example, Maji et al."> showed the ther-
moresponsive color changes of PNIPAM-coated plas-
monic nanoparticles, and Lim et al.'® designed plasmonic
nanoparticles assembled on PNIPAM hydrogel colloids,
which led to a visible response under external tempera-
ture changes. However, these solution-based plasmonic
temperature sensors are inappropriate for utilization as a
wearable sensor. Alternatively, Song et al.'” achieved
thermoresponsive hydrogel architectures by decorating
PNIPAM hydrogel colloids with plasmonic nanoparticles
and incorporating the PNIPAM hydrogel colloids. How-
ever, the hydrogel-based sensor cannot be applied to a
wearable patch-type sensor because large volume changes
are necessary to implement thermoresponsive color shifts.
In addition, a single sensor with one transition tempera-
ture cannot be used to detect a wide range of temperature.
Therefore, for practical applications, challenges still
remain to fabricate wearable colorimetric sensors with a
wide range for temperature detection.

In this study, we demonstrate a stretchable and wear-
able colorimetric patch by embedding thermoresponsive
plasmonic microgels inside a stretchable hydrogel film,
which exhibits large and reversible color shifts in response
to temperature changes without any volume change in the
sensor itself. For a fast and efficient thermoresponsive
color change, raspberry-shaped plasmonic microgels were
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fabricated by decorating gold nanoparticles (AuNPs) on
PNIPAM microgels. The plasmonic microgels enabled a
large thermoresponsive extinction peak shift (176 nm) in a
short time (1 s) due to efficient plasmon coupling between
outer AuNPs (through the large volumetric changes) and
the fast phase transition behavior of PNIPAM microgels
as a function of temperature. Furthermore, the incor-
poration of plasmonic microgels into the flexible poly-
acrylamide (PAAm) hydrogel film resolved the instability
issue of colloidal solution and realized thermoresponsive
color shifts without volumetric changes in the hydrogel
film. When the flexible thin (500 um thickness) patches
were in contact with hot objects of various shapes, the
patches rapidly visualized (response time: 1s) the local
temperature changes with a large extinction peak shift of
>170 nm. By encapsulating the plasmonic microgel film
with polydimethylsiloxane (PDMS) film, it can be stret-
ched by up to 90% without showing a color change.
Additionally, smart colorimetric array patches with vary-
ing color transition temperatures were fabricated by
tuning the LCST of the plasmonic microgels, which
exhibited a wide temperature-detection range (29-40 °C)
and high resolution (0.2 °C). Due to the tunable LCST of
plasmonic microgels, the thermoresponsive array patches
can be applied as a colorimetric thermometer for ther-
moresponsive actuators to visualize the actuation tem-
perature through color changes during continuous
heating and cooling steps.

Materials and methods

Materials
N-isopropylacrylamide (NIPAM; 98%), N,N'-methyle-
nebisacrylamide (99%), HAuCl, (99.99%), trisodium

citrate dihydrate, 2,2-diethoxyacetophenone (>95%), 2-2'-
azobis(2-methylpropionamidine) (98%), acrylamide (AM;
>99%), butyl methacrylate (BMA; 99%), sodium chloride
(NaCl; 299.5%), and sodium dodecyl sulfate (SDS; >98.5%)
were purchased from Sigma-Aldrich (MO, USA). Sylgard
184 was purchased from Dow Corning (MI, USA). All
chemical compounds were used as received without fur-
ther purification.

Synthesis of PNIPAM microgel and AuNPs

The PNIPAM microgels were synthesized following
the work of Wei et al*> NIPAM (1613.1 mg) and
N,N’'-methylenebisacrylamide (0.1165g, 5mol% relative
to NIPAM) were dissolved in 145 mL of deionized water
in a three-neck round-bottom flask with a reflux con-
denser followed by stirring and bubbling with nitrogen.
After stirring the solution at 70 °C for 40 min, the poly-
merization was initiated by adding 5 mL of 0.03M 2-2’-
azobis(2-methylpropionamide) aqueous solution. The
solution was kept at 70 °C for 3 h. The resulting solution
was purified by dialysis in a cellulose membrane with a
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molecular weight cutoff of 12-14 kDa for 24 h to remove
unreacted reagents. To fabricate the PNIPAM microgels
with different LCSTs, the molar mixing ratio for NIPAM
and comonomers (BMA or AM) was varied while the total
number of moles of the monomers was held constant.
The AuNPs were synthesized by a kinetically controlled
step-growth method®®. Briefly, 150 mL of 2.2 mM sodium
citrate aqueous solution was heated to the boiling point
under vigorous stirring. Then, 1 mL of 25 mM HAuCl,
aqueous solution was added. After 10 min, the tempera-
ture was reduced to 90°C to inhibit any secondary
nucleation. Then, 1 mL of the HAuCl, solution was added
and the mixture stirred for 30 min; this step was repeated
twice. Fifty-five milliliters of the solution were extracted,
which was the product of each step. The solution was
then diluted by adding 53 mL of deionized water and 2 mL
of 60 mM sodium citrate aqueous solution. The resulting
solution was used as a seed solution for the next step. This
process was repeated until the desired size for the AuNPs
was obtained. The AuNPs were purified by centrifugation
and redispersed in 0.9 mM trisodium citrate aqueous
solution. The plasmonic microgels were prepared by
adding a specific amount of PNIPAM microgel solution to
AuNP solution under moderate stirring for 1 min.

Fabrication of plasmonic microgels in bulk hydrogel
Plasmonic microgels were embedded in PAAm hydro-
gels to counteract the precipitation problem. AM (0.3554
g), N,N'-methylenebisacrylamide (0.3622 g), and 2,2-die-
thoxyacetophenone (2.5puL) were mixed into 1mL of
deionized water and nitrogen bubbled through the solu-
tion for 10 min. The solution was added to the plasmonic
microgel solution, which was also pretreated by bubbling
with nitrogen, with a volumetric ratio of 1:4. The mixture
was gently poured into the mold and the AM was poly-
merized under UV irradiation (365 nm, 15 W) for 17 min.

Fabrication of thermoresponsive color-changing actuator

Polyethylene terephthalate (PET) films with a thickness
of 25 um were cut into the shape of a human hand and
used as the bottom layer. Plasmonic microgels in PAAm
were prepared by a procedure similar to that used for
plasmonic microgels in the bulk hydrogel; however, they
were formed directly on the PET film by pouring the
mixture of plasmonic microgels in the pre-PAAm solu-
tion into a PDMS frame (0.5 mm thick), which was
attached to the ends of the PET fingers, followed by the
application of UV irradiation for 17 min. Hydrogels were
covered by thin PDMS film with a thickness of 150 um to
prevent the evaporation of water. PNIPAM or P(NIPAM-
co-BMA) hydrogels with a thickness of 1 mm were cut
into 5x 10 mm?” samples and attached to the PET film
using double-sided tape. The critical temperatures were
taken as the middle points of the regions exhibiting the
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sharpest thermoresponsive volume changes. The hydro-
gels were attached after removing the water on the sur-
faces of the hydrogels. To maximize the effect of the
hydrogel volumetric changes on actuation, the double-
sided tape was attached only at the ends of the hydrogels.

Characterization

The decoration of AuNPs on the PNIPAM microgels
was observed using a scanning electron microscope (SEM,
$-4800, Hitachi, Tokyo, Japan). The UV-visible (UV-Vis)
spectra for the AuNPs and plasmonic microgels were
measured using a UV-Vis-near-infrared spectro-
photometer (Cary 5000, Agilent, CA, USA). The ther-
moresponsive color shift of the plasmonic microgels was
measured by a spectroradiometer (PR-655, Photo
Research, NY, USA). The dynamic light scattering (DLS)
and zeta-potential (Nano ZS, Malvern Instruments, Mal-
vern, UK) were measured to characterize the hydro-
dynamic diameter and surface charges of the AuNPs and
the PNIPAM microgels. The temperature detection for
the array patch was carried out on a thermal plate (TP-
CHS-C, Tokai Hit, Shizuoka, Japan).

Results and discussion
Design and fabrication of the thermoresponsive
colorimetric sensors

For the design of the thermoresponsive colorimetric
sensor, a raspberry-like architecture for the AuNPs on
PNIPAM microgels (plasmonic microgels) in the PAAm
hydrogel matrix was adopted, as illustrated in Fig. 1a. The
raspberry-like architecture for the plasmonic microgels
led to significantly large color changes caused by facile
changes in the plasmonic mode between the uncoupled
and coupled LSPR of the AuNPs'***, The AuNPs on the
PNIPAM microgels exhibited loosely packed structures at
24°C and densely packed assemblies at 50 °C, resulting in
uncoupled and coupled plasmon modes at 24 and 50 °C,
respectively. Figure 1b shows SEM images of the swollen
and shrunken plasmonic microgels at 24 and 50 °C caused
by thermoresponsive volume changes in the PNIPAM
microgels. Moreover, to broaden the temperature detec-
tion range, the LCST of the PNIPAM microgels was
controlled by adding additives, such as salt or surfactant,
into the dispersion, or by copolymerizing NIPAM with
hydrophilic or hydrophobic comonomers®>~". For prac-
tical application, the thermoresponsive colorimetric sen-
sor can be integrated into a sensor array patch containing
plasmonic microgel films with different transition tem-
peratures, which can broaden the range of detectable
temperature and visualize skin temperature more pre-
cisely when attached to the human skin (Fig. 1c).

For the attachment of AuNPs on the PNIPAM micro-
gels, electrostatic attractive forces were utilized between
the oppositely charged AuNPs and PNIPAM microgels.
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Fig. 1 The operating principle of a thermoresponsive colorimetric sensor. a Schematic illustration of the plasmonic microgels in the PAAmM
hydrogel under swollen and shrunk states. b SEM images of the plasmonic microgels with 51 nm AuNPs under the swollen state at 24 °C (left) and
under the shrunken state at 50 °C (right); the inset images show pictures of the plasmonic microgel dispersions under each condition. ¢ Schemes of
the sensor array patches attached to human skin at different positions (neck and hand)

Smart colorimetric patch with
gradient color array

Negatively charged AuNPs with diameters in the range of
26-72nm were synthesized by a kinetically controlled
step-growth method (Supplementary Figure 1a)*>. The
UV-Vis spectra for the AuNP dispersion with different
sizes show plasmonic absorbance bands at 524-543 nm,
where redshifts are observed with increasing AuNP size
(Supplementary Figure 1b). The zeta-potential values
indicate that the surface charges of AuNPs are negative
with values between -34.6 and -30.8 mV and that they are
not significantly influenced by the size difference (Sup-
plementary Figure 1c). The net surface charge of AuNPs
was negative due to stabilization of the AuNPs by the
citrate molecules, with the large absolute values for the
zeta-potential indicating that the AuNP dispersions are
highly stable®®. Positively charged PNIPAM microgels
(550 nm in diameter) were synthesized by surfactant-free
precipitation polymerization (Supplementary Figure 2a)*%.
To create positive charges (4+14.5 mV) on the PNIPAM
microgels, 2-2'-azobis(2-methylpropionamidine) was
selected as a positively charged initiator (Supplementary
Figure 2b). DLS analysis indicates that the surface area of
the PNIPAM microgels changed greatly over sixfold,
decreasing from 3.17 to 0.49 um” for a decrease in dia-
meter from 1004 to 396 nm according to the temperature
change from 24 to 50 °C (Supplementary Figure 2c). The

dramatic changes in the surface area enabled effective
control of the interparticle spacing between AuNPs. Here,
to maximize the thermoresponsive color shift, the mixing
ratio of AuNPs and PNIPAM microgels was optimized
based on the SEM images and the peak shift in the UV-Vis
spectra since neither an insufficient nor excess amount of
AuNPs caused a strong color transition over the LCST. In
the case of 51 nm AuNPs, the optimized mixing ratio for
the AuNPs and PNIPAM microgels is 50:1 in volume
because it shows the most densely coated AuNPs on
PNIPAM microgels at 50 °C and the biggest peak shift in
the UV-Vis spectra (Supplementary Figure 3). An insuf-
ficient amount of AuNPs led AuNP assemblies on the
PNIPAM microgels that were too sparse, which resulted
in weak interparticle plasmon couplings over the LCST,
with an excessive amount of AuNPs resulting in a coupled
plasmon peak even before the temperature increment.
Under the optimized mixing ratio for the AuNPs and
PNIPAM microgels, the plasmonic microgels exhibit dif-
ferent thermoresponsive colors and UV-Vis peak shifts
depending on the size of the AuNPs (Supplementary
Figure 4)'*. Based on the analyses for the colors and UV-
Vis spectra of different plasmonic microgel solutions at
different temperatures, the plasmonic microgels with 51
nm AuNPs exhibit the largest color shift in response to
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temperature changes between 24 and 50 °C and the least
precipitation of microgels at 50 °C (Supplementary Fig-
ure 4). Therefore, the plasmonic microgels with 51 nm
AuNPs were selected for further analysis.

To fabricate a thermoresponsive colorimetric sensor
with vivid color, the concentration of plasmonic microgel
solution was increased by eight times. The concentrated
plasmonic microgel solution was unstable because its
zeta-potential value is close to zero (Supplementary Fig-
ure 5). This issue of an unstable plasmonic microgel
solution was solved by embedding the plasmonic micro-
gels in a bulk hydrogel matrix. PAAm was chosen as the
bulk hydrogel matrix because it is not thermoresponsive,
and, therefore, maintained a constant total volume with
minimal interference with the volume changes of the
plasmonic microgels. Thus, a PAAm hydrogel film (dia-
meter, 5mm; thickness, 1 mm) containing eight times
concentrated plasmonic microgels was encapsulated
between two thin (150 um thickness) PDMS films
(Fig. 2a). The PAAm hydrogel film was able to hold the
high concentration of plasmonic microgels in the matrix;
therefore, the plasmonic microgels in hydrogel film
exhibited a better stability during the repetitive heating/
cooling cycles and more vivid colors compared to the
plasmonic microgel solution. Figure 2b shows that the
flexible plasmonic microgel film exhibits noticeable color
shifts between red and grayish violet in response to the
temperature changes between 24 and 50°C after 5s
heating and cooling processes. The high concentration of
plasmonic microgels maximized the high thermal con-
ductivity of the AuNPs, and the thin PAAm hydrogel films
minimized the low thermal conductivity of the PAAm
hydrogel®®. The plasmonic microgel film exhibits a large
peak shift of 176 nm (from 545 to 721 nm) and highly
stable and reversible peak shifts in the UV-Vis spectra
after 10 heating/cooling cycles (Fig. 2c, d).

Spatial temperature mapping and sensor stretchability

A plasmonic microgel film was also fabricated as a form
of large-area colorimetric patch with a large dimension
over 10x4cm? which enabled spatial temperature
mapping of a complex shape, for example, by placing an
object with the letters “UNIST” on the patch (Fig. 3a).
When a heated object was applied to the patch, the col-
orimetric patch showed a rapid color shift in the local
contact area. Figure 3b shows the reversible thermo-
responsive color shifts from red to grayish blue in the
distinct contact area when aluminum objects with
cylindrical or rectangular shapes (heated on 60°C hot
plate) are in contact with the patches (Supplementary
Figure 6a). The thermoresponsive color shift is identifi-
able even after 1s of contact and the magnitude of the
color shift increases with contact time (Fig. 3b). The
colorimetric patch exhibits high flexibility with a bending
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radius of 1.5cm and can be attached conformably and
bent easily on the finger (Supplementary Figure 6b).
Moreover, the thermoresponsive smart colorimetric patch
was stretchable by encapsulating the plasmonic microgel
film with a PDMS film. Figure 3c shows the stretchable
patch with strain-insensitive colors, which can be stret-
ched following the PDMS film without failure. The
hydrogel-elastomer networks were built by covalent
crosslinking of hydrogel polymers on the elastomer sur-
face®. The original size of the plasmonic hydrogel was
40 x 15 x 1 mm®, and it was stretched up to 90% in length
in 3's (Supplementary Video 1). As shown in Fig. 3d, the
original plasmonic color and the thermally shifted color in
the middle are not disturbed by stretching the sample up
to 90% (from 4 to 7.6 cm in length).

The red, green, blue (RGB) values were obtained for
every 10% increment in strain (Supplementary Figure 7).
As the tensile strain was increased to 90%, the relative
changes in the red values for both unheated and heated
regions exhibit negligible fluctuations compared to the
red value for the unheated region at 0% strain (Fig. 3e).
The linear-fitting graphs also showed slopes of <0.003,
which indicated that the smart colorimetric patch had
strain-insensitive colors. In addition, a very localized
temperature change was monitored on an array film with
dots of 2 mm in diameter (Supplementary Figure 8). The
thermoresponsive colorimetric array film exhibits a loca-
lized color shift on the specific positions consisting of 1 x
1, 2x2, and 3 x3dots after contacting with a heated
aluminum object (Supplementary Figure 8b-e).

Wide detection range and high resolution of
thermoresponsive colorimetric array patches

One advantage of PNIPAM for temperature sensors is
the facile control of the LCST by simply mixing with
additives or adding comonomers?”~%, which can broaden
the range of detectable temperature. For example, the
addition of salt is known to reduce the LCST of PNIPAM
microgels by disrupting the hydration structure sur-
rounding the PNIPAM polymer chains®®. In the plas-
monic microgels investigated here, the addition of NaCl
up to 0.5 M decreased the color transition temperature for
the plasmonic microgel solution from 32 to 25°C (Sup-
plementary Figure 9a). In contrast, the addition of a sur-
factant increases the LCST of the PNIPAM microgels by
improving the solubility of the PNIPAM chains in water™.
When the concentration of SDS was increased up to 4
mM, the color transition temperature of the plasmonic
microgel solution increases from 32 to 44°C (Supple-
mentary Figure 9b). Figure 4a shows the color transition
temperature of different plasmonic microgel solutions
obtained by the aforementioned modifications as esti-
mated by analyzing the colors of plasmonic microgel
solutions at different temperatures (Supplementary
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Figure 9). The color transition temperatures were deter-
mined to be 29, 31.5, 32, 33.5, and 37 °C for the plasmonic
microgel solutions with 0.2M NaCl (N2), 0.1 M NaCl
(N1), no additives (Ref), 1 mM SDS (S1), and 2 mM SDS
(S2), respectively. The UV-Vis spectra for the plasmonic
microgels in PAAm films with different types and con-
centrations of additives exhibit different peak shifts at 24
and 50 °C (Fig. 4b). The positions of the plasmon coupling
peaks were determined by multiple peak fitting using a
Gaussian function (Supplementary Figure 10). The plas-
monic microgel films with higher transition temperatures
exhibited a smaller shift in peak position. Specifically, the
UV-Vis peak for N2 (transition temperature of 29 °C)
shifts by over 200 nm (from 555 to >758 nm) while the S2
(transition temperature of 37 °C) exhibits a peak shift of
only 9nm (from 539 to 548 nm) (Fig. 4c).

For the analysis of the thermoresponsive colorimetric
array patch, the plasmonic microgel films with different
transition temperatures (N2, N1, Ref, S1, and S2) were
assembled into a single thermoresponsive array patch by
sandwiching them between thin PDMS films. Then, the
color changes of the colorimetric array patch were ana-
lyzed on a thermal plate 5s after reaching the target
temperature (Fig. 4d). The temperature resolution of the
colorimetric sensor was examined by analyzing the RGB
values of each pixel. Figure 4e shows the color change of
the colorimetric array patch for temperature changes
from 24 to 45°C with a 1°C interval. The N2 pixel
exhibited a color shift at the lowest temperature
(approximately 30 °C), while the S2 pixel exhibited a color
shift at the highest temperature (approximately 40 °C).
The transition temperatures for the plasmonic microgel
films were slightly higher than those for the plasmonic
microgel solution with the same additives because the
difference in the refractive indices affected the plasmon
resonance band position?’l. In our work, the surrounding
refractive index increased from 1.33 (water) to 1.47
(PAAM)** due to the embedding of the plasmonic
microgels in the PAAm matrix, resulting in a redshift of
the plasmon resonance band. Figure 4f shows the RGB
values for the plasmonic microgel films with different
transition temperatures measured in 1°C increments. In
the initial stage (24°C), the R values were dominant
among three color values for all the pixels because the
color of the plasmonic microgel films was close to red. For
increasing temperature, the R values decreased and the B
values increased, indicating that the colors changed to
violet, which is a mixture of red and blue colors. The
critical temperatures for the color change (vertical arrows
in Fig. 4f), where the R and B values are close to each
other, are 30, 32, 34, 37, and 40 °C (from N2 to S2), which
are highly correlated with the gradient transition tem-
peratures in the thermoresponsive colorimetric array
patch.
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To further understand the property of the thermo-
responsive colorimetric array patch, the colors of each
pixel at different temperature conditions were measured
from 24 to 45 °C with a 1°C interval by using a spectro-
radiometer (Fig. 4g). The x and y coordinates shifted from
the red to violet region with increasing temperature.
Specifically, the values for N2 shifted at the lowest tem-
perature range (25-30°C) and the values of S2 shifted at
the highest temperature range (35-40 °C). The detailed
color spectra for the plasmonic microgel films also indi-
cate a gradual increase of the intensity for the blue color
approximately 450 nm due to the increasing temperature
(Supplementary Figure 11). Moreover, our smart colori-
metric patch has a high temperature resolution so that
0.2°C changes can be detected through an RGB analysis
of the array patch (Supplementary Figure 12). In parti-
cular, as the temperature increased, the red values for
sample S1 exhibit a high sensitivity of —8.24°C™", with a
high linearity of R* = 0.99 in the temperature range of 29-
33°C, via linear fitting, and the red values for sample S2
also exhibit a high sensitivity of —8.76 °C™", with a high
linearity of R* = 0.99 in the temperature range of 33-40 °C
(Fig. 4h). For decreasing temperature, the sensors did not
show distinct degradation of the sensitivity and linearity.
The temperature-sensing capabilities of our colorimetric
sensors can be favorably compared with previous reports.
Supplementary Table 1 summarizes the materials used
and the performance reported for colorimetric tempera-
ture sensors in recent studies™'®'"**3*737  Although
many previous colorimetric temperature sensors based on
plasmon coupling'®™73*** show large optical peak shifts
(or color shifts), the response times range from several to
tens of minutes, with most sensors in a solution state,
which limits their practical applications in wearable sen-
sors. Although other colorimetric temperature sensors
built using photonic crystals*>** and thermoresponsive
dye molecules”®**” exhibit a shorter response time of <1
min, only a thermochromic liquid crystal-based sensor®
shows potential for application as a wearable temperature
sensor. However, the thermochromic liquid crystal-based
sensor has a lower temperature resolution (approximately
1°C) compared to our sensor (0.2 °C).

Furthermore, the thermoresponsive color shift of the
thermoresponsive colorimetric patch is nearly impervious
to environmental factors, such as environmental tem-
perature, air flow, humidity, and light intensity. The
thermoresponsive colorimetric patch built using plas-
monic microgels shows negligible changes in RGB values
on the thermal plate at constant temperature (30, 35, and
40 °C, respectively) when the environmental temperature,
air flow, and relative humidity were changed (Supple-
mentary Figure 13). The thermoresponsive colorimetric
patch also exhibits minor fluctuations in RGB values
under varying light intensities while the temperature of
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the thermal plate increased from 25 to 40°C (Supple-
mentary Figure 14).

Colorimetric temperature visualization

The sensor array patches visualized the temperature of
human skin or the curved surface of an object by dis-
playing different color patterns. When the thermo-
responsive colorimetric array patch was placed onto a
variety of surfaces, such as the human neck (35.0°C on
the neck), wrist and back of the hand (34.1 °C on the wrist,
21.6 °C on the back of the hand after washing), and sur-
face of a beaker filled with water (29.0°C on the beaker
surface), the array patch displays different color patterns

at each temperature (Fig. 5a-c). The temperature of
human skin and a water-filled beaker were confirmed by
using traditional thermometers (Supplementary Fig-
ure 15). This result verifies that it is possible to use the
proposed thermoresponsive colorimetric patch as a
wearable and attachable temperature sensor. Additionally,
the combination of a thermoresponsive sensor with
actuator technologies enables both optical output signals
and mechanical actuation in response to temperature
changes, which makes it possible to monitor temperature
in real time via thermoresponsive actuation®**’, In this
study, we developed a thermoresponsive smart hand by
assembling the plasmonic microgel films on fingertips for
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a neck, b hand, and ¢ a beaker filled with water. (The pictures were taken 5 s after attachment of the patches.) d Pictures of the hand-shaped actuator,
composed of a plasmonic co-microgel film on the fingertips and co-PNIPAM films on the finger joints, placed in a water bath at different
temperatures for 1 min. (The red-dotted boxes indicate the positions of the co-PNIPAM films, and the red arrows indicate the specific finger

exhibiting the color change and actuation.)

thermoresponsive color output and PNIPAM films on
finger joints (red-dotted rectangles in the figure) for
thermoresponsive actuation (Fig. 5d). In Fig. 5d, PNIPAM
films were attached to the joints of a 25 pum-thick hand-
shaped PET film for double-layer structured actuators,
which showed behavior analogous to that of finger joints.
For efficient heat transfer to the smart hand, the experi-
ment was performed in a water bath. In this system, the
concentration of additives in PNIPAM hydrogels can be
altered by solvent dilution when the PNIPAM hydrogels
are soaked in a liquid medium. Therefore, the LCST
tuning was carried out by copolymerization of the PNI-
PAM to overcome the stability issue for additive-
containing PNIPAM hydrogels.

The LCST of the PNIPAM hydrogels can be increased
or decreased by copolymerizing NIPAM with hydrophilic
or hydrophobic comonomers, respectively”~*’. To
achieve a lower LCST, BMA was selected since the butyl
groups in BMA impart more hydrophobic characteristics
to the thermoresponsive hydrogel®®. In contrast, AM was
selected for the synthesis of PNIPAM hydrogels with
higher LCST, since it introduces more hydrophilic prop-
erties to the hydrogels”’. Here the same attachment
principle was employed based on electrostatic interaction
between copolymerized PNIPAM microgels and AuNPs
since P(NIPAM-co-BMA) and P(NIPAM-co-AM)
microgels were obtained with positive surface charges
(Supplementary Figure 16). To broaden the range of
temperature detection, PNIPAM microgels with either

BMA or AM as comonomers were synthesized with dif-
ferent ratios of NIPAM to BMA or AM. Based on the
endothermic peaks identified from the differential scan-
ning calorimetry thermograms, it was confirmed that the
transition temperature of the copolymerized plasmonic
microgels (plasmonic co-microgels) was tuned over a
wide range of 28.0-44.8 °C (Supplementary Figure 17). For
the thermoresponsive actuation of fingers at different
temperatures, the copolymerized PNIPAM bulk films (co-
PNIPAM films) with different transition temperatures
(approximately 34.0, 35.8, 38.9, and 43.5°C) were fabri-
cated with 20, 15, 5, and 0 mol% of BMA, respectively
(Supplementary Figure 18). The co-PNIPAM films with
different transition temperatures were attached onto the
finger joints in the order of increasing transition tem-
perature from the index finger to the little finger. Here, to
match the transition temperature of the plasmonic co-
microgel film with that of the co-PNIPAM film on the
same finger, the plasmonic co-microgel films (BMA20,
PNIPAM, AM9.1, and AM16.6) showing different tran-
sition temperatures (approximately 31.9, 34.9, 40.2, and
44.8°C, respectively, Supplementary Figure 17a) were
attached onto the fingertips (from the index finger to the
little finger). The plasmonic co-microgel and the co-
PNIPAM film with the same comonomer condition
showed different transition temperatures because differ-
ent hydrogel thicknesses and NIPAM concentrations also
affected the transition temperatures. The co-PNIPAM
film was twice the thickness of the plasmonic co-microgel
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film (500 um thick), with NIPAM concentrations of 0.95
and 6.4 x10*molg ' used for the synthesis of the
microgel and hydrogel, respectively, resulting in different
transition temperatures at approximately 34 and 32 °C*.

Figure 5d shows that the smart hand is in an open
position and that the fingertips are red color in water at
22°C. When the water temperature was increased to
approximately 32°C, the color of the index fingertip
changed from red to grayish violet and the index finger
began to bend because the temperature was close to the
transition temperature of the plasmonic co-microgel and
co-PNIPAM films on both the fingertip and joint. As the
temperature was gradually increased further, the colors of
the fingertips changed and finger bending occurred
sequentially in the order of middle, ring, and little fingers
due to the sequential increase in the transition tempera-
ture of the plasmonic co-microgel and co-PNIPAM films
on these fingers. In water at 45 °C, all of the fingers bent
and the colors at the fingertips were grayish violet. When
the water temperature was cooled back to 22 °C, the smart
hand returned to the open position and the fingertip
colors changed back to red. The fingertip of the smart
hand exhibited rapid (approximately 5s) color changes
but a relatively slow (approximately 1 min) finger-bending
motion in response to both heating and cooling processes
due to the relatively large size of the hydrogel actuators
compared to the thermoresponsive colorimetric sensors.
The tunable critical temperatures for both color patches
and actuators in the smart hand enabled sequential
responses by way of color changes and movements of
fingers in response to varying temperature, which is
beneficial for smart sensors, actuators, and soft robotics
with various geometries®"*®,

Conclusions

In summary, we developed a thermoresponsive, smart
colorimetric patch based on raspberry-shaped plasmonic
microgels encapsulated in a stretchable PAAm hydrogel
film. For a fast and efficient thermoresponsive color change,
the raspberry-shaped plasmonic microgels were fabricated
by decorating AuNPs on PNIPAM microgels, which
induced a large color change via reversible tuning of the
plasmon couplings between AuNPs when the thermo-
responsive PNIPAM microgels reversibly swelled and
shrunk in response to thermal stimuli. The PAAm hydrogel
film stabilized the plasmonic microgels against aggregation
and held the high concentration of plasmonic microgels in
the matrix, which enabled stronger plasmonic couplings in
the plasmonic microgel film compared to a plasmonic
microgel solution. The plasmonic microgel films resulted in
vivid color changes with high reversibility and stretchability.
Furthermore, the transition temperature was easily
tuned over the range of 25.0-44.8 °C by adding salt, sur-
factant, or copolymerizing with comonomers, which
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enabled thermoresponsive array patches to cover a wide
temperature-detection range of 25-40 °C. The freestanding
thin-film structure of the colorimetric patches resulted in a
rapid and dramatic color change from red to grayish violet
and a shift in the extinction peak by 176 nm in 1, with the
realization of a temperature-sensing resolution of 0.2°C,
which is higher than that obtained for previous colorimetric
temperature sensors based on plasmonic coupling. As a
proof-of-concept application, we demonstrated a smart
hand that exhibited sequential responses in the way of color
changes and movements of fingers in response to changes
in the environmental temperature. Additional combinations
of various types of plasmonic nanoparticles and hydrogel
microstructures can be explored in the future to broaden
the applications of smart colorimetric patches for smart
sensors and actuators.
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