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Abstract

The Bragg gap that stops wave propagation may not be formed from zero or a very low frequency
unless the periodicity of a periodic system is unrealistically large. Accordingly, the Bragg gap has been
considered to be inappropriate for low frequency applications despite its broad bandwidth. Here, we
reporta new mechanism that allows formation of the Bragg gap starting from a nearly zero frequency.
The mechanism is based on the finding that if additional spin motion is coupled with the longitudinal
motion of a mass of a diatomic mechanical periodic system, the Bragg gap starting from a nearly zero
frequency can be formed. The theoretical analysis shows that the effective mass and stiffness at the
band gap frequencies are all positive, confirming that the formed stop band is a Bragg gap. The
periodic system is realized by a spin-harnessed metamaterial which incorporates unique linkage
mechanisms. The numerical and experimental validation confirmed the formation of the low-
frequency Bragg gap. The zero-frequency Bragg gap is expected to open a new way to control hard-to-
shield low-frequency vibration and noise.

1. Introduction

A Bragg gap is a stop band originating from destructive interferences of scattering waves in periodic structures
[1, 2], such as phononic or photonic crystals. It has been applied to design various wave manipulating devices
including wave-guides [3—6], frequency filters [7—10] and wave diodes [11-14]. The size of a Bragg gap can be
large, but its formation at a very low frequency band has been considered theoretically impossible unless
unrealistically large periodicity is considered. Due to the theoretic limit, previous research has considered other
principles to form very low-frequency stop bands. In particular, resonant metamaterials have been intensively
studied [15-23] because negative effective material properties attained near the resonant frequency can stop
wave propagation. However, the resulting stop band is generally narrow compared with the stop band formed by
the Bragg phenomenon. Other attempts using the plasmonic effects have been made to achieve ultra-low
frequency stop bands. Lee et al [24, 25] utilized the notion of acoustic plasmonics to design acoustic
metamaterials exhibiting negative material properties at quasi-static frequencies. In elasticity, Yao eral [26] and
Yu etal [27] proposed elastic metamaterials supported by elastic foundations, also realizing quasi-static stop
bands. However, these approaches require external fixation to the metamaterial, which is difficult to realize in
general applications. Recently, Oh et al [28] proposed flexural elastic metamaterials based on zero rotational
stiffness. However, no mechanism to form a broad Bragg gap at extremely low frequencies was explored for
general periodic systems.

Through this study, we present our new mechanism to form a Bragg gap at extremely low frequencies. For
the investigation, we consider longitudinal waves the polarization direction of which are parallel to their
propagation directions. To explain our idea, consider a diatomic lattice consisting of two dissimilar masses (M
and m, M > m) connected through springs of stiffness k, as shown in figure 1(a). In the diatomic lattice, the
lower band-edge frequency of the Bragg gap is given by w; = /2k/M that corresponds to a standing wave
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(a) Diatomic lattice structure (b) Proposed spin-harnessed metamaterial system
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Figure 1. Comparison of (a) the conventional periodic system and (b) proposed spin-harnessed periodic system. (wy: the lower band-
edge frequency of a Bragg gap.)

motion [29]. At wy, two heavier masses M in adjacent unit cells move in the opposite directions while the lighter
mass m between them remains stationary. Therefore, the springs connecting M and m are compressed or
stretched.

Our new mechanism is based on the idea that the lower band-edge frequency w; can become zero if the
deformation of the connecting springs vanishes. To fulfill zero spring deformation, we newly introduce a unique
mechanism that harnesses additional spin motion to the lighter mass #1; the connecting springs can have no
deformation even if the longitudinal motions of M and 1 are the same as those in the original system. The unit
cell having the spin-harnessed metamaterial is sketched in figure 1(b). Due to the linkage mechanisms attached
to the lighter mass m and the spring k, m is allowed to spin about its center. To couple the additional spin motion
with the longitudinal motion of m, two skew-symmetrically installed rigid links are inserted between m and k. To
allow the links to rotate freely, pinned joints are employed for connection. As shown in figure 1(b), the mass m of
the spin-harnessed metamaterial rotates without longitudinal motion when two adjacent masses M move along
the opposite longitudinal directions at w;. Because of the rotation, the connecting springs remain undeformed,
making wy (nearly) zero and realizing a Bragg gap at extremely low frequencies.

Itis worth mentioning that there have been some attempts to utilize rotational motion to achieve special
elastic metamaterials. For instance, chiral elastic metamaterials [18, 30, 31] utilizing the rotational motion were
concerned with the realization of negative elastic parameters. Unlike in these studies, our mechanism
incorporates the rotational motion to form a zero-frequency Bragg gap for general periodic systems, which has
not been realized or studied previously. The idea of inertia amplification has been studied [32—-34] to realize
broad stop bands at low frequencies, but their physical origin is different from the Bragg gap considered here.
The methods to achieve a very low frequency Bragg gap in a system of granular crystals [35—-37] appear hard to be
used for general periodic systems.

This work proposes a new mechanism to form a zero-frequency Bragg gap in a general periodic system by
using spin-harnessed metamaterials. The validity of the proposed mechanism is checked both numerically and
experimentally. Considering the importance of the zero-frequency stop band in various vibration applications,
the proposed mechanism is expected to open a new way in various broad-band low frequency vibration devices.

This paper is organized as follows. In section 2, a new mechanism of spin-harnessed metamaterial will be
introduced. In section 3, numerical and experimental validation of the proposed mechanism will be given.
Conclusions are drawn in section 4.

2. Mechanism of spin-harnessed metamaterial

We begin with the theoretical investigation of the spring deformation as well as the actual motion of a mass—
spring system allowing the spin motion of mass #1; the corresponding model is illustrated in figure 2(a). For the
analysis, all masses are assumed to move only along the x axis but the additional spin motion is allowed in the
lighter mass m. To describe the wave physics of the resulting spin-harnessed metamaterial system, we employ the
general approach to identify the effective mass and stiffness of a target system by comparing its wave equations
with those in a general monatomic lattice. In this section, the involved physics of the spin-harnessed
metamaterial system will be explained after the effective parameters of the spin-harnessed metamaterial shown
in figure 2(a) are defined first.
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Figure 2. (a) Mass—spring system of the spin-harnessed metamaterial and (b) the undeformed and deformed configurations of the
spinning mass during longitudinal wave propagation.

2.1. Derivation of dispersion equation and effective parameters.

At the initial configuration, the spinning mass is assumed to make an angle of ° with respect to the x-axis as in
figure 2(b). In addition, the rigid link connecting the lighter mass m and the spring k and damper Cyis assumed
to be perpendicular to the mass m. From the geometry of the initial configuration shown in the left figure of
figure 2(b), the following equation can be derived:

2 2
b* =a® + (%L) — aL cos 0° = g% + (%L) — alL sin oY, (1)

where o’ is defined as a® = 7/2 — 6°. When the mass 1 spins, 6° and a are changed accordingly. Even if a is
varied by Aa as the result of the angle change, as illustrated in figure 2(b), the following relation must hold:

2
b? = (a + Aa)* + (%L) — (a + Aa)L cos(8° — 6,)

2
=(a+ Aa)? + (%L) — (a + Aa)L sin(a® + 6,). ()
Combining equations (1) and (2) yields
2 2

a® + (%L) —alsina® = (a + Aa)> + (%L) — (a + Aa)L sin(a® + 6,), 3)

which can be re-written as
aL[sin(a® 4 6,) — sin a®] = 2aAa + Aa?> — AaL sin(a® + 6,), (4)

or

2aL cos(a® + 0,/2)sin(0,/2) = 2aAa + Aa?> — AaL sin(a® + 6,). (5)

The symbol 6, denotes the rotation angle of the nth spinning (or lighter) mass as in figure 2(a). If the rotation
angle of the spinning mass is sufficiently small, linear approximation is possible. In this case, one can assume
that cos(a® + 6,/2) ~ cos a2, sin(8,/2) ~ 6,/2,sin(a® + 6,) ~ sin a®and Aa®? ~ 0. With these
approximations, equation (5) can be reduced to

0,aL cos o = Aa(2a — L sin a?). (6)

Because the spinning mass and the attached links are skew-symmetrically configured, one can show that
Aa = ur — ul) /2, where u and uX shown in figure 2(a) denote the longitudinal displacements at the left
and right sides of the pinned links connected to the spinning mass 1, respectively. As a result, one can obtain the
following equation which relates 6, to 1, and u," as
_ (2a — Lsin aO)A (2a — L sin o)

a = (LlnR*l/lnL)EF(unR*unL)) (7)

0,
aL cos o 2aL cos o’

where the parameter Fis definedas F = (2a — L sin a?) /2alL cos o. The geometric relation in equation (7)
will be used in deriving the equation of motion.

3
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In the nth unit cell consisting of the larger mass M and the spinning lighter mass 1, the following equations
of motion can be derived:

- for the mass M:

d?u, d
M? =k@r |, +ul - 2u,) + Csa(uﬂR_1 + ul — 2u,). (8a)

- for the spinning mass m:

2 L R
longitudinal motion: (T* — TR)cos a? = md— By , (8b)
8 " " dr? 2
o : 10 R 4’0,
spinning motion — EL(Tn + T,)) = Imm, (8¢c)

while I,,, is the rotational inertia of the spinning mass and T and T.X are the forces acting through the left and
rightlinks. Their positive directions are indicated in figure 2(a). Also, cos o, ~ cos o is assumed since the
rotation angle of the spinning mass is sufficiently small. (Note that o, is the angle between the rigid link and the
x-axis during wave propagation, as shown in figure 2(b).) Since the connecting links are rigid, T and T.X can be
expressed in terms of the spring and damping forces as

T cosa® = ki — ) + G5y — ub), 9a)
T €05 0% = Kl = thyy1) + Go = ) (9b)

In equation (9), only the x-directional components of T and TR are considered because the left and right
sides of the spinning mass are made to move along the x direction only. This constraint produces the constraint
reaction forces in the y direction at the hinge joints where 1, and X are measured and these forces
counterbalance the angular momentum of the spinning mass .

For time-harmonic motion of angular frequency w, equations (8) and (9) can be re-written as

—wMu, = k@R |+ ul — 2u,), (10a)
2
TF— TR = - (uf + ), (10b)
2 cos o’
T+ TR = 2%’%29”, (10¢)
TE cos o = k(u, — ul), (10d)
TR cos a® = k(R — u,i), (10e)

where /0t = iw is used. In equation (10), the complex-valued k is defined as k = k + iwC,. Substituting
equation (7) into equation (10¢) yields

I,F
T+ TR = 2"‘Tu)2(u,f2 —ub). (10f)
Ifequations (100) and (10f) are combined, the following equation can be obtained
I,F m I,F m
TL:(’"_ _ —)MZMRi(m_+ )wzuL:AuRiBuL’ 11a
" L 4 cos o g L 4 cos o° " " " (11a)
I,F m I,F m
TR = (m— + 7)w2uR — (m— - 7)w2uL = BuR — Aul, (11b)
§ L 4 cos o’ : L 4 cos af " § "
where
2 2
A:WImF, wm , (110
L 4 cos af
2 2
B— w4l F wm ’ (11d)
L 4 cos o’

Ifthe variables 4% and 1] are eliminated, one can derive an equation involving the variable u,, only, so that
the effective parameters can be defined. To express (1%, u.l) in terms of u,,, equations (11a), (115) and
equations (10d), (10¢) are combined as
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Au,f2 — BunL = —o(u" — u,,L), (12a)
cos o

Bul — Aul = O(uf — Uy, (12b)

COoSs

which can be equivalently expressed in matrix form as

_ 0/% 0/7 L ~ L
[uun ]: 1 Bcosa~/k A cos a®/k ) u,},2 W u,; , (13)
i Acosa®/k 1 — Bcosa®/k||u, u,

_ 0/k 0/k
W 1 Bcosa~/k Acosa/k~‘ (13b)
Acosa®/k 1 — Bcosa®/k
From equation (13a), one can derive
ul 1 1 — Bcosa®/k —A cosa®/k [ Uy, ] (130)
ulk detW| —Acosa®/k 1 — Bcosa®/k [LHn+1]
Finally, 4.} | and u,} can be explicitly expressed in terms of (14,,, 14,4 1),
0 0
”571: 1~ 7Aco~soz | + 1~ 17Bc0~soz ", (14a)
detW k detW k
L 1 B cos o’ 1 A cos o
u, = —|1 - - U, + —| ———= Up i1 14b
detW k " detW k " (140
Substituting equations (14a), (14b) to equation (10a) yields
A 0
—Mw?u, = —%(unﬂ + Uy — 2Up) — P - Uy, (15a)
p =2k — ﬁ(ﬂ; — 2A cos a® — 2B cos af). (15b)

To obtain the dispersion equation in the periodic system, the Floquet-Bloch condition is used as
Upy1 = U, exp(—igD) where g and D are the wavevector and periodicity, respectively [29]. Then, equation (15)

is reduced to
p ) 5 A cos o . .
—|M - = |w” = ————(exp(—igD) + exp(igD) — 2
( e e (exp(—igD) p(igD) — 2)
0 D
= —4ACL~Q sinzq—, (16a)
det W 2
- 1 -
=2k — —— 2k — 2A cos @’ — 2B cos oY), 16b
p detW( ) (16b)
W 1—Bcoso¢0~/l€ A cos o /k | (160)
Acosa’/k 1 — Bcosa®/k
2 2
A:wImF_ wm , (16d)
L 4 cos a°
2 2
B:wImF+ wm ’ (16e)
L 4 cos a®
F = (2a — L sin %) /2aL cos o, (16f)
k =k + iwC, (169)
Ifequation (16a) is viewed as the dispersion relation for a monatomic mass—spring system, it can be re-
written with the effective mass and stiffness as [29]
Meffwz = 4Keff sinz(qD/Z), (176!)
where the effective mass and stiffness parameters for the spin-harnessed metamaterial are defined as
Mg =M L2, (17b)
w
A cos o
K = ————— 17¢
eff detl (17¢)
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Figure 3. (a) Mass—spring system of the spin-harnessed metamaterial and (b) the dispersion curve, effective mass and spring stiffness
of the spin-harnessed metamaterial.

2.2. Wave physics of zero-frequency Bragg gap

Figure 3 plots the dispersion curve, the effective mass M.gand stiffness K¢ calculated by equation (17) at various
frequencies. Note that the detailed values of the parameters used to plot figure 3, such as M or m, will be given in
section 3. However, the wave physics explained in this section generally hold. Also, the damping coefficient C;
appearing in the actual system was not considered to explain the physics of the spin-harnessed system better. The
dispersion curve plotted in figure 3(b) shows that a stop band is formed from 0 Hz to frequency

f, = J2k/m /27 Hz. To confirm that the formed stop band is a Bragg gap, we argue that (1) the real value of the
wavevector q is /D and that (2) both of the effective mass and stiffness are positive in this frequency range; see

figure 3(b) [29]. It is remarked that the Bragg gap occurs if the left term in equation (17a), Mg w?, becomes
larger than the right term, 4K.¢. In this case, there exists no real-valued g that can satisfy the wave dispersion
equation in equation (17a) [29]. Therefore, both the effective mass and stiffness should be positive in the Bragg
gap; if either the effective mass Mg or stiffness K g were negative, the formed stop band would not be a Bragg
gap. (This type of band gaps has been actively studied using resonance-based metamaterials because they can
yield negative parameters for the formation of a stop band.) In figure 3(b), it can be clearly observed that K.g1is
extremely small for frequencies between 0 Hz and f; Hz and thereby Mg’ is larger than 4 K¢ Because Mg

> 0, Ker> 0and gD is complex-valued between 0 Hz and f; Hz, the formed stop band in the frequency range
can be clearly identified as a Bragg gap starting from w; = 0. Note that K. = 0 at f = 0 Hz in the proposed
mass—spring system, which indicates that the spinning mass m at f = 0 Hz will simply rotate and do not transfer
any longitudinal force along the x direction when an external force is applied at the left end of the spin-harnessed
metamaterial system. However, zero transmission of the longitudinal force could cause a structural stability
issue in practical applications; see the appendix for more details about the stability issue.

In the passband between f, = \/2k/m /2m Hzand f, = \/Zk(m + M)/mM /27 Hz, the wave speed is
negative because the effective mass and stiffness are simultaneously negative as evidenced by figure 3(b). The
negative wave speed is expected because the dispersion curve between f; and f, corresponds to the optical branch
of a general diatomic mass—spring system. The notion of effective parameters may not be useful for an optical
branch because the frequency range of a typical optical branch usually exceeds the homogenization limit. If an
optical branch is formed at sufficiently low frequencies below the homogenization limit, however, the notion of
effective parameters can be useful. As proven in the previous works on the coiling up space [38—40], the optical
branch appearing below the homogenization limit yields double negativity, which can be clearly seen in
figure 3(b).

Finally, we examine the wave behavior of the spin-harnessed metamaterial system above f, Hz. In this
frequency range, a broad stop band is formed because only the effective stiffness is negative. This behavior can
also be predicted because a semi-infinitely wide stop band is formed after the optical branch. In the actual spin-

6
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Figure 4. The dispersion curve, effective mass and spring coefficients for (a) the lossless case and (b) the lossy case with the damping
coefficient of Cg= 0.8.

u
n+l N

Figure 5. Mass—spring system of the finite spin-harnessed metamaterial.

harnessed metamaterial system, however, there can be another wave branch because it has continuum
characteristics, which cannot be fully described by the theoretic investigation based on the discrete mass—spring
system.

In the previous investigations, the dispersion curve and the effective parameters were evaluated for the
lossless case. In the actual spin-harnessed metamaterial, however, damping may not be ignored. Therefore, the
effect of the damping on the zero-frequency Bragg gap is also studied. Figure 4 plots the dispersion curve and the
effective parameters for the undamped and damped case. Note that only the real values are plotted in the figures.
For the undamped case, the effective parameters are all real-valued over all frequencies. For the damped case,
however, the effective parameters are complex-valued because of damping, but the stop band frequencies for the
damped case are not much altered for those of the undamped case. Therefore, the dispersion analysis using the
results for the undamped case can be used to predict wave behavior in the damped case.

The analysis in this section shows that if an additional spinning motion is added to the lighter mass, the Bragg
gap starting from zero frequency can be achieved. Because the Bragg gap is usually broader than the stop band
achieved by the internal resonance phenomena, the stop band formed by using the proposed spin-harnessed
metamaterial can form a broad band gap starting from zero frequency. For instance, one can realize an extremely
broad stop band from 0Hz to f; = +/2k/m /27 Hzbyincreasing f; with adjusted k and m values.

2.3. Wave transmission for the finite spin-harnessed metamaterial system

In the previous section, the spin-harnessed metamaterial of infinite length is considered. In actual metamaterial
realization, however, the metamaterial should be finite. Therefore, we should check whether the Bragg gap is
actually formed in a low-frequency range for the case of the finite-length spin-harnessed metamaterial.

Figure 5 shows the finite version of mass—spring system shown in figure 2; the system consists of N number
of mass M. In this case, the resulting system consists of N — 1 unit cells and the transmission ratio can be defined
as |uy /1. To derive it analytically, the transfer matrix approach will be employed. First, equations (8a4)—(8c¢)
and (9a), (9b) are written for each unit cell as:
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- for the 1st unit cell

—wMuy = k(| — w),

TE cos a® = k(uy — ub),
u}4+_u§)

>

(TF — TR cos o = —mwz(

~SL( + T =~
TR cos a® = k(uf — w).
-forthenthunitcel 2 < n < N — 1)

—wMu, = k! + ul | — 2u,),

TE cos a® = k(u, — ub),

L R
(TF — THcos a® = —4nuﬂ(£z—%§lﬁL),

—%L(T,f + T = —L,w,

TR cos a® = k(R — u, ).

- for the final mass M (Nth mass)
—wMuy = k@l | — uy).
If uf and unL are expressed in terms of u,, by using equations (14a) and (14b), we have

- for the 1st unit cell

L 1 B cos o’ 1 A cos o
U = —11 — — u + —| — — U,
detW k detW k

-forthenthunitcel 2 <n < N — 1)

I 1 ( Acosa® A L B cos o’ ;
n—1 detW ~ n—1 =~ n

k detW k
Ul — 1 I_Bcosao - 1 ( Acosa’ y
" detW k " detW k e

-and for the final mass M (the N mass),

SR 1 ( Acosa’ o L, B cos o’ y
NUT detw k MU detw k m

Substituting equations (21)—(23) into equations (18a), (19a), (20) yield:

- for the 1st unit cell

. 7 0 0
oM = | k _ B cos~a " A cos~a "
detW detW detW

-forthenthunitcel 2 < n < N — 1)

~ 2k 2B cos o’ A cos o°
—2k + u, —

—w?Mu,, = — — =
detW detW

detW

—(Up41 + Up—1)-

JHOhetal

(18a)
(18b)

(18¢)

(184d)

(18e)

(19a)
(19b)

(19¢)

(19d)

(19e)

(20)

@1

(22a)

(22b)

(23)

(24)

(25)
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Figure 6. The wave transmission calculated analytically for damping coefficients Cs= 0.8 and Cs= 0.8 for the metamaterial systems
consisting of (a) 2 unit cells and (b) 4 unit cells.

- for the final mass M (Nth mass)

UN-—_1. (26)

B i 0 0
—szuN:(—k—i— k B cos o )uN+_Acosa

detW B detW detW

If a symbol denoting the displacement ratio U,}_, = u,,/u,,— is introduced, it will be more convenient to
obtain the transmission ratio. To this end, equation (25) is re-written as

. 2k 2B cos o’ A cos o
2k — _ —— — WM |u, = ———— (U1 + uy_). 27
( detW detW ) detW (1 > @7)
Dividing both sides of equation (27) by u,,_ yields
. r 0 0
i _ Zk~ n 2B cos~a M|t A cos~a Upiy 1l 28)
detW detW Uy detW \u,_;
Using the relation u,, 1/t 1 = Upi1/thy X thy/t,_1 = U'TTU"_, the following equation can be obtained:
~ i 0 0 0
- 2k~ 2B cosa’ vy A cos o o o | = A cos & 29)
detW detW detW detW

From equation (29), one can show that U/”_, is related to U ! as

B A cos a°
2kdetW — 2k + 2B cos a® — w*MdetW + A cos a°U

Equation (30) suggests that U ™! (or U/"~}) is needed to calculate U/"_,. Accordingly, either U? or Uy_; should

be known, in order to calculate |uy / ;| by using the recurrence formula. Here, we will calculate Uy explicitly

to start the recurrence formula. (Obviously, one can proceed to use the recurrence formula when Uy is known.)
By rewriting equation (26) as

(30)

n
n—1

k B cos o 5 A cos o
- — — — WM |uy = ——————un_1 31
detW detW ) N detw ! 1
one can obtain the explicit formula for U, as
N A cos o

Un_1 (32)

 RdetW — K + Bcosa® — wMdetW

As can be seen in equation (32), Uy, is a function of the known parameters only. Therefore, one can calculate

Uy from equation (32), and by repeating the same process, all other terms (Uy~, Uy "3, ..., U; and U?) can be
calculated from equation (30). Finally, the wave transmission ratio can be calculated analytically as
N
unN uN Un-—1 Uus U _
— = || — —‘ = I[N UV = T 10, (33)
u UN—1 UN—2 [27) u i—2

or, in decibel scale

2]

1

Us Un

Tiree™ = 201log,

N
=20 loglO(H |U,fl|). (34)

25} UN-1 i=2

Figure 6 shows the numerically calculated wave transmission TL;FBhemy for the mass—spring system consisting

of 2 and 4 unit cells. Here, the same unit cell considered in figure 3 is used in the analytic calculation, i.e., the
metamaterial is shown to have a Bragg gap from 0 Hz to f; Hz, pass band from f; Hz to f, Hz and band gap above
f> Hz. It can be seen that the finite metamaterial system also exhibits same wave characteristics predicted by the
infinite metamaterial system; very low wave transmission from 0 Hz to f; Hz and above f, Hz is observed for both

9



10P Publishing

New J. Phys. 20 (2018) 083035 JHOhetal

(b) 15.4 cm
32x1.0cm

6.4x1.7 cm 3.2x1L0 cm

(2 Main link

(@ Main body @ Spring ® Side link

@ Rigid domain

y
T_. x (wave prop. direction) B Viscoelastic domain

Figure 7. (a) Schematics of the actual spin-harnessed metamaterial considered in this work and (b) the detailed components of the
actual metamaterial.

2 and 4 unit cell cases, and relatively high wave transmission can be seen from f; Hz to f, Hz. This shows that the
zero-frequency Bragg gap from 0 Hz to f; Hz can be effectively formed with finite metamaterial structures.

Furthermore, figure 6 also shows the wave transmission change for various damping coefficient. As can be
seen in figure 6, the damping coefficient value affects the vibration transmission mainly in the pass bands, not in
the stop bands. This is due to the fact that the effect of damping is different depending on the frequency range. In
the pass band, waves can be well transmitted through each unit cell and thus the damping effect can take place
over the whole unit cells. In the stop bands, however, waves cannot propagate through the system so that wave
energy is mostly confined near the directly actuated unit cell. Accordingly, the damping effect influences the
system very locally near the excitation point. This results also suggest that the formation of the zero-frequency
Bragg gap which was validated with undamped case can also be extended to the damped case.

3. Numerical and experimental validation

To validate our idea, a new spin-harnessed metamaterial is designed and numerical and experimental
investigations are carried out. Among various metamaterials possible from our new mechanism, figure 7(a)
shows the actual spin-harnessed metamaterial considered in this work for the numerical and experimental
investigation. Since the actual spin-harnessed metamaterial is somewhat complicated, the role of each part is
explained.

1. Main body: It acts as a lumped mass M in the mass—spring system. To ensure that it behaves as a rigid body,
itis made of steel (SM45C). The motion of the main body corresponds to the displacement u,, of the mass—
spring system shown in figure 2.

2. Main link: This part acts as the spinning mass . It can move along the x-direction and also rotate about its
center in the plane. Due to its slender shape, it has not only mass m but also inertia I,,,. Due to the same
reason in the main body, it is made of steel (SM45C).

3. Spring: It is used to store elastic energy and represents the spring k in the mass—spring system shown in
figure 2. Here, a spring with the stiffness value of 2000 N m™is considered (WL14-35, Misumi).
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Figure 8. (a) Numerical simulation model of the actual spin-harnessed metamaterial, (b) analytically and numerically calculated wave
transmission, (c) wave motions at various actuation frequencies.

4. Connector: This part connects the spring and the linkage part. To minimize the undesirable deformation of
the connector, it is made of aluminum (A601) having low density but high stiffness. The movements of the
connectors are denoted by 1% and u," in the mass—spring system shown in figure 2.

5. Side link: The main role of the side link is to connect the connector and the main link. Because it is made of a
light plastic material (MC-nylon), it is assumed to make no contribution to the mass and stiffness of the
system.

With the geometric parameters shown in figure 7(b) and the materials given above, the actual spin-harnessed
metamaterial can be considered as the mass—spring system in figure 2 with the following parameters;

M = 0.4168 kg, (35a)
m = 0.2250 kg, (35b)
I, = 6945 cm?, (35¢)
k = 2000 N m~, (35d)
al = 45°, (35¢)
a=4.5cm, (35f)
D =154 cm. (352)

From our mechanism developed in section 2, the spin-harnessed metamaterial is expected to have a stop band
from0Hzto f; = \/2k/m /2w = 21.22 Hz,apassband from f; = 21.22 Hz to

L= \/2k(m + M)/mM /2w = 26.33 Hz and astop band above f, = 26.33 Hz. Based on the information,
the formation of stop and pass bands will be numerically and experimentally checked by measuring the wave
transmission defined in equation (34) for the finite spin-harnessed metamaterial system.

3.1. Numerical investigation on the proposed spin-harnessed metamaterial.
Figure 8(a) shows the numerical modeling to simulate the wave transmission. For the numerical simulation, the
COMSOL Multibody Dynamics Module was used. Since the main body, main link and side link are significantly
stiffer than the spring part, they were modeled as rigid bodies. Also, the spring part was considered as a
viscoelastic material having complex-valued Young’s modulus to take the damping effect into consideration. To
consider the complicated connections in the spin-harnessed metamaterial, two kinds of joint conditions were
used; a prismatic joint condition was used to guarantee the one-dimensional motion along the x-direction and a
hinge joint was used to allow each part to rotate freely.

For actuation, the first main body was excited at an amplitude of 0.2 mm. Then, vibration analysis (time-
harmonic analysis) was carried out at various frequencies. After the simulation was completed, the x directional
displacement of the third main body (denoted as 1) was normalized with respect to that of the first main body
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(denoted as u;). Finally, the wave transmission was calculated as Tfémulation = 20log,, |us/w|. If uz = uy, for
instance, the transmission is calculated to be 0. Note that since the simulation is based on the vibration
simulation, i.e., both the incident and reflected waves exist in the simulation result, u; can be larger than u; and
T4p can be larger than 0.

Figure 8(b) shows the wave transmission calculated by the numerical simulation and by the analytic
calculation. Very good agreements can be observed between the two results, justifying our analytic investigation.
From the analytic and numerical results, it can be clearly seen that the wave transmission is extremely low at very
low frequencies which correspond to the Bragg gap frequencies (below 21.22 Hz). Also, significantly high wave
transmission is measured around the frequency range from 21 to 26 Hz, which corresponds to the pass band of
the spin-harnessed metamaterial (from 21.22 to 26.33 Hz).

Note that in the COMSOL Multibody Dynamics Module, the geometric nonlinearity (the effect of the angle
change in the linkage part) is considered, while our analytic equation was derived based on the linear
assumption. The geometric nonlinearity effects can be more significant at high frequencies because the
rotational motion of the metamaterial becomes significant. However, two results agree well as shown in
figure 8(b), indicating the geometric nonlinearity can be ignored if the magnitude of the actuation displacement
is not very large. In addition, the simulation results show that the spin-harnessed metamaterial based on our new
mechanism can effectively provide a stop band only with two unit cells.

Figure 8(c) shows the numerical simulation results of the spin-harnessed metamaterial at the frequencies of
18,23 and 28 Hz. Note that 18 and 28 Hz belong to the stop band, while 23 Hz, to the pass band. At 18 Hz, the
first main body moves along the positive x-direction and the main link rotates clockwise. Due to the spinning
motion of the main link, almost no longitudinal wave is transmitted through the second mass, resulting in
extremely low vibration transmission. This dynamic motion can also explain why the analytically calculated
effective stiffness of the spin-harnessed metamaterial becomes almost zero in the frequency belonging to the
stop band.

On the other hand, the dynamic motion at 23 Hz is somewhat different from that at 18 Hz. At 23 Hz, the
motion of the main link is dominated by the translational motion along the x-direction, rather than the spinning
motion as observed at 18 Hz; in the frequency range of the optical branch, the translational movement of the
lighter mass becomes significant and due to this translational motion, the longitudinal wave can be transmitted
through the system. Accordingly, high wave transmission is observed in the optical frequency range.

At 28 Hz, figure 8(c) shows that the spinning motion dominates the motion of the main link again,
preventing the longitudinal wave transmission through the spin-harnessed metamaterial. However, the detailed
spinning behavior is different from that observed at 18 Hz. At 18 Hz, both the main body and link move along
the positive x-direction but at 28 Hz, the main body moves along the positive x-direction while the main link
moves along the negative x-direction. This shows that the motion of the main link at 18 Hz is dominated only by
the spinning motion, while at 28 Hz, both the translation and spinning motion dominate the main link.

3.2. Experimental investigation on the proposed spin-harnessed metamaterial.

To experimentally validate the formation of a Bragg gap starting from zero or a very low frequency, the spin-
harnessed metamaterial system is fabricated as in figure 9. To ensure dominant longitudinal wave motion along
the x direction, the spin-harnessed metamaterial system was installed on a linear motion guide. Note that the
spin-harnessed metamaterial is designed to have f; = 21.22 Hzand f, = 26.33 Hz.

Based on the fabrication, the detailed experimental setting is shown in figure 9. For the actuation of a
longitudinal motion, a vibration shaker (Modal exciter type 4809, Bruel & Kjaer) was connected to the left side of
the spin-harnessed metamaterial system shown in figure 9. Sine waves with an amplitude of 2.56 mm at
actuation frequencies varying from 3 to 31 Hz were excited and the longitudinal displacement (u;) of the first
heavier mass (M) at the excitation point was recorded. At the right side of the spin-harnessed metamaterial
system, the longitudinal displacement (u3) of the third heavier mass along the x axis was measured by using a
laser vibrometer (OFV-551, Polytec).

Figure 10(a) shows the measured displacements u; and u; at various frequencies. To eliminate noise from
the measured signals, measurements were repeated and averaged more than 20 times for each actuation
frequency and post-processed with the Fourier transformation as shown in figure 10(b). The measurements
were carried out under steady state conditions, implying that the actual experiments were vibration
experiments. Using the measured experimental data, the wave transmission ratios ngperimem = |uz| /|w | were
estimated for each frequency. Note that the dispersion curve and effective material parameters cannot be
calculated from the current experiments. However, the experimental results can be used to investigate the actual
frequency range of the stop band.

Figure 10(c) compares the wave transmission obtained by analytical, numerical, and experimental methods
for a wide range of frequencies. To obtain the analytical and numerical results, the damping value of Cg= 1.8,
estimated from the experimentally measured vibration response, is used. As shown in figure 10(c), the
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Figure 9. Photo of the fabricated spin-harnessed metamaterial and experimental setup.
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Figure 10. (a) The measured displacements u, and u; at various frequencies, (b) the Fourier spectra of the measured displacement u5
for various frequencies and (c) the comparison of the analytical, numerical and experimental wave transmission ratios, |uz| /|u].

transmission ratios calculated by different methods agree well with each other, except at frequencies over 25 Hz.
Figure 10(c) clearly shows that relatively low vibration transmission occurs for 0 < f < f; = 21.22 Hzand
f, = 26.33 Hz < f whilerelatively high transmission occurs between f; = 21.22 Hzand f, = 26.33 Hz.
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Indeed, the formation of alow-transmission frequency zone below f; = 21.22 Hz isa clear indication of the
formation of a stop band in a very low frequency range.

The discrepancy between the experimental and the numerical/analytical results at frequencies higher than
25 Hz is mainly due to nonlinear effects resulting from large displacement/deformation of the components
comprising the spin-harnessed metamaterial system. As the actuation frequency becomes higher (while the
magnitude of the input displacement fixed), the increased inertia force causes larger displacement/deformation.
In fact, the change in the geometric configuration of the linkage part became so large that the experiment was
almost impossible at the frequencies higher than 32 Hz. To check any adverse effect of nonlinear behavior
originating from the geometric change in the linkage part at other frequencies, figure 10(b) is prepared. If the
nonlinearity is significant, frequency components other than the single excitation frequency would be observed
from the measured signal u3. However, figure 10(b) confirms that the most dominant frequency component in
u3 is the excitation frequency while the magnitudes of other frequency components appearing in u5 are small
compared with that of the excitation frequency component. This validates our linear assumption for analytical
dispersion analysis. However, the amplitude of the actuated frequency component was taken from u5 in
calculating the wave transmission.

4, Conclusion

Through this study, we established a new mechanism that can form a Bragg gap starting from zero or a very low
frequency. Specifically, we showed that the zero-frequency Bragg gap can be formed if a spin motion is coupled
with the main longitudinal wave motion of a lighter mass in a diatomic mass—spring system. Spin motion can be
harnessed to the lighter mass m of a diatomic mass—spring system by installing two skew-symmetrically attached
linkages to m, making zero elastic deformation in the springs of the system at the lower band-edge frequency of
the Bragg gap. The theoretical analysis showed that the lower band-edge frequency becomes zero if the spin
motion is properly harnessed. The simulations and actual experiments confirmed that a Brag gap covering 0-21
Hz can be formed by using the spin-harnessed metamaterial system made of a relatively small-period unit cell
(15.4 cm).

The proposed mechanism to form a zero- (or low-) frequency Bragg gap is expected to be a new way to make
various low-frequency wave controlling devices. Especially, because a traditional mechanism to form a Bragg
gap for low-frequency applications would require a large-sized structure, the proposed spin-harnessed
metamaterial system could be an alternative to form a broad low-frequency stop band. Besides, the proposed
mechanism gives us an insight into a new type of low-frequency vibration isolation devices.
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Appendix

Al. Effect of the initial folding for spin-harnessed metamaterial
Since the spin-harnessed metamaterial has zero stiffness at the static limit, it is unstable and there is a possibility
that any nonzero initial force can change the initial configuration of the spinning mass due to the folding, as
illustrated in figure A1. In this case, the dynamic characteristics, such as the dispersion curve or the Bragg gap
frequencies, may be different from those considered in section 2. Therefore, we will investigate if the effect of the
initial folding configuration is significant.

First, consider the initially folded linkage structure shown in the left illustration of figure A1 (b) with the
folding configuration parameters agc = a?, 0% = 0°and 3 = /2. From the geometry, one can derive the
following relation:

2
b? = af- + (%L) — apcL cos 0. (A1)

If the spinning motion changes the length apc and the angle #%- by Aa and 6, respectively, as shown in the right
illustration of figure A1(b), the following relation holds
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Figure Al. (a) Mass—spring system of the spin-harnessed metamaterial and (b) the geometric change of the linkage mechanism having
a different initial folding configuration. The folding configuration is described by avgc, arc and 0%

2
b? = (apc + Aa)? + (%L) — (agc + Aa)L cos(03%: — 6,). (A2)

Combining equations (A1) and (A2) yields
2

agc + (%L)2 — apcL cos 0% = (apc + Aa)* + (%L)
— (agc + Aa)L cos(0%: — 6,). (A3)
One can re-write equation (A3) as
apcL[ cos(@%c — 6,) — cos 0%:] = 2apc Aa + Aa® — AaL cos(0yc — 6,). (A4)
The cosine terms in the left side of equation (A4) can be combined as
2apcL cos(0%c — 6,/2)sin(6,/2) = 2apcAa + Aa?
— AaL cos(0%: — 0,). (A5)

With the small deformation assumption such that Aa? ~ 0, cos(0%- — 6,/2) ~ cos 6% and
sin(6,/2) ~ 0,/2, equation (A5) reduces to

OpapcL cos 0% = Aaagc — L cos 0c). (A6)
Finally, one can derive the following equation
o — (2agc — L cos 6%) _ (apc — L cos ) Wk — uby
! apcL cos 0% agcL cos 0% " !
= Frc(u; — ), (A7)

where the parameter Fgis defined as Frc = (2apc — L cos %) /apc L cos 0%c. This equation shows that the
effect of the initial folding is that the parameter Fis replaced by Fgc.
Using the relations derived above, one can derive the equation of motion as

- the mass part M

du,

M
dr?

k@R, + uk — 2u) + CS%W,F_] +ul — 2u,). (Aa)

- the linkage part m (for x directional longitudinal motion and spinning)
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L R _ n n
(T, — T,;) cos agc = mﬁ(f , (A8b)
1 d%),
— —L(TE + T®)sin 8 = I,,—2. A8¢
L ysin = 1, <2 (A8c)
In the springs, the following relations must hold
TF cos apc = k(u, — ul) + Csdi(un —ubh), (A8d)
t
TR cos are = KQu® — ) + Co(u® = 1y,). (A8e)

dt

By comparing equations (A8a)—(A8¢) with equations (8a), (80), (8¢) and equations (9a), (9b), one can see that
they are identical if one replaces the parameters a’, L and Fwith agc, L sin 3 and Fgc, respectively. Thus, the
dispersion relation and the effective material parameters for the initially-folded spin-harnessed metamaterial
can be easily obtained by using equations (16) and (17) with replacing the parameters properly:

w

detWFC
D
= —4w sin? q—, (A9a)
dethC 2
- 1 -
=2k — —(2k — 2Apc cos apc — 2Bgc cos age), A9b
Prc det o ( FC FC FC FC) (A9b)
Wie = 1 — Bgc cos aFC~/IE A cos agc/k | (A9%)
Agc cos agc/k 1 — B cos apc/k
2 2
tye = Lhnlic (A%d)
L sin 8 4 cos agc
2 2
By = Llnfrc | _wm (A%)
Lsin 3 4 cos apc
Frc = (agc — L cos ch) /arcL cos H(F)C, (A9f)
k =k + iwC, (A9g)
p
Mg =M — =2, (A9h)
w
Ko = —2¥c COs axe (A9))
det‘/VFC

In calculating the dispersion relation for the folded case, we note that apc and agc are related to each other as
agc + b? — 2apch cos agc = (L/2)% (A10a)
Also, the angle 3 defined at the initially folded state can be calculated from apc and ovpc as:
L arc

; = (A10b)
2 sin apc sin

Figure A2 plots the dispersion curves, effective mass and spring coefficients for various initial folded
structures with agc values. (For this figure, the lossless condition was used to clearly demonstrate the effects of
agc.) Here, the same parameters shown in equation (35) were used except the a” and a values. Interestingly, one
can see that the upper edge frequency of the first Bragg gap, 21.22 Hz, is little affected by the initial folding
parameters agc, while the lower edge frequency of the second Bragg gap is highly affected by them. In fact, the
upper edge frequency of the first Bragg gap, which is the main topic in this research, is not a function of the initial
folding parameters.

To discuss the phenomenon occurring at the upper edge frequency of the first Bragg gap, it is noted that the
upper edge frequency of the first Bragg gap and the lower edge frequency of the second Bragg gap correspond to

infinite or negative-infinite effective stiffness K. To explain this, we note that Ko = —Agc cos agpc/ detWyc
becomes infinite or negative-infinite when detWic = 0, implying that
. B 2 A 2
i = (1 - B (e asanc)t any
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Figure A2. The dispersion curve, effective mass and spring coefficients for various agc 0f 37°,41°,43°,49° and 57°. Note that in our
numerical and experimental investigation, a® = 45° is used.

After some calculation, one can show the solution (w) to equation (A11) satisfies the following equation:

(1 B wzm)(l 2w, Frc cos apc) o (A12)
2k kL sin 08
Solving equation (A12), one can derive
The upper edge freq. of the 1st Bragg gap: w? = 2k/m, (Al3a)
The lower edge freq. of the 2nd Bragg gap: w? = kL sin 3/, Frc cos agc. (A13b)

Equations (A13a) and (A13b) show that the upper edge frequency of the first Bragg gap is a function of the
spring and mass coefficient only, while the lower edge frequency of the second Bragg gap is a function of several
parameters including Frc and apc that vary with the initial folding parameters (agc and agc). As our main
interest in this research is on the first Bragg gap formed at zero or extremely low frequencies, the analysis in this
section shows that the Bragg gap formed by the spin-harnessed metamaterial is very robust and not significantly
affected by the initial folding condition. This can be an advantage if one considers to apply the spin-harness
metamaterial approach in various low-frequency vibration shielding applications.

A2, Stabilizing the spin-harnessed metamaterial
Although the spin-harnessed metamaterial can provide abroad Bragg gap in an extremely low frequency range,
it cannot sustain any static force since the spin-harnessed metamaterial has a zero stiffness at the static limit.
Therefore, some special treatment is needed when the spin-harnessed metamaterial system is used in actual
applications for vibration or noise shielding. There can be various ways to stabilize the spin-harnessed
metamaterial, such as connecting the heavier mass M and the lighter mass m by an additional spring. Here, we
will consider a method based on elastic foundation [26, 27] for stabilization. Figure A3(a) shows the spinning
mass—spring system with an elastic foundation spring of stiffness G. The spring G is newly introduced between
the heavier mass M and an external fixed boundary. Obviously, the use of G stabilizes the system, i.e., a static
force applied to the system is responded by the spring G. The question is how much it affects the formed
Bragg gap.

For the analysis, we note that the spring G affects the effective mass coefficient at extremely low frequencies
around the static limit [26, 27]. In this case, the effective mass of the elastically-supported spinning mass—spring
can be written as

G G
Meff = Meff - ;r

(A14)
where M. is the effective mass coefficient of the spin-harnessed metamaterial defined in equation (17). As can
be seen in equation (A14), the additional term of — G /w? is introduced due to the spring G.

Figure A3(c) plots the dispersion curve, effective mass and spring coefficients of the elastically-supported
spinning mass—spring system. The spring G contributes to make the effective mass coefficient negative at a very
low frequency range, as reported in the previous researches [26, 27]. Accordingly, a new stop band is formed
from 0 Hz to f; Hz; this stop band originates from the single negative material parameter (more specifically,
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Figure A3. (a) The spin-harnessed metamaterial elastically supported by the foundation spring G. The dispersion curves, effective
mass and spring coefficients for (b) G = 0 N m~'and(c) G = 20 Nm™".

negative mass and positive stiffness) so that it is not a Bragg gap. However, the comparison of the dispersion
curves in figures A3(b) and (c) shows that the upper edge frequency of the Bragg gap, f;, is almost unaltered by
the presence of the spring G. Furthermore, the pass band generated around f; is almost flat. Because wave
propagation in a flat branch is highly affected by damping, the whole frequency range below f; can practically
work as a stop band. Here, we emphasize that only a narrow stop band from 0 Hz to f; Hz would be formed if the
spin-harnessed metamaterial were not used. The analysis in section shows that a broad, extremely low-
frequency stop band can be formed stably if the spin-harnessed metamaterial with elastic foundation is used.
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