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ABSTRACT: Plasmonic nanostructures provide an efficient
way to control and enhance the radiative properties of
quantum emitters. Coupling these structures to single defects
in two-dimensional materials provides a particularly promising
material platform to study emitter−plasmon interactions
because these emitters are not embedded in a surrounding
dielectric. They can therefore approach a near-field plasmonic
mode to nanoscale distances, potentially enabling strong
light−matter interactions. However, this coupling requires precise alignment of the emitters to the plasmonic mode of the
structures, which is particularly difficult to achieve in a site-controlled structure. We present a technique to generate quantum
emitters in two-dimensional tungsten diselenide coupled to site-controlled plasmonic nanopillars. The plasmonic nanopillar
induces strains in the two-dimensional material which generate quantum emitters near the high-field region of the plasmonic
mode. The electric field of the nanopillar mode is nearly parallel to the two-dimensional material and is therefore in the correct
orientation to couple to the emitters. We demonstrate both an enhanced spontaneous emission rate and increased brightness of
emitters coupled to the nanopillars. This approach may enable bright site-controlled nonclassical light sources for applications
in quantum communication and optical quantum computing.

KEYWORDS: quantum emitters, single-defect emitters, plasmonic nanopillars, two-dimensional semiconductors,
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Q uantum emitters play an important role in many
quantum optical applications, such as secured quantum

communication,1,2 quantum computation,3,4 and quantum
metrology.5,6 Single-defect emitters in atomically thin materi-
als7−16 constitute a new class of nonclassical light sources that
provides a two-dimensional platform to realize these quantum
optical applications. Because they are two-dimensional in
nature, these emitters do not suffer from dielectric screening
effects and losses due to total internal reflection that hinder
other solid-state emitters that are embedded in a material with
a high refractive index. Moreover, they can be generated at
desired locations by strain engineering,17−23 which offers a
simple and scalable approach to couple them to photonic
devices.
Plasmonic nanostructures constitute an important class of

photonic devices for coupling to quantum emitters.24 These
nanostructures concentrate light to subwavelength dimen-
sions,25,26 resulting in strong light−matter interactions that can
enhance the brightness and emission rate of quantum
emitters27,28 and achieve strong optical nonlinearities.29

Furthermore, emitter−plasmon structures offer the possibility

to create optical devices that are significantly smaller than the
wavelength of light25,26 and operate at extremely high
bandwidths.30,31 Two-dimensional emitters are promising to
couple to plasmonic nanostructures because they are not
embedded in a dielectric material. They can therefore
approach the plasmonic mode of a nanostructure to nanometer
distances without being obstructed by the surrounding
substrate, but achieving this coupling is challenging because
of the stringent alignment requirement between the emitter
and plasmonic mode which is in the nanometer size scale.25,26

Such an accurate alignment in a site-localized device is
particularly challenging because it requires accurate and
simultaneous spatial control of the plasmonic mode and
emitter. Atomic force microscope tips can position plasmonic
nanostructures close to a quantum emitter,32 but this approach
requires a complicated experimental apparatus and is not easily
scalable to multiple devices. Other methods employ an emitter
positioned on a dense array of plasmonic nanostructures33 or
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generated at a roughened metallic surface34 in order to ensure
the emitter is coupled to at least one localized plasmonic
mode, but these approaches are still random and require a
large device area. Metal nanowires can also efficiently couple to
two-dimensional emitters22 but exhibit delocalized propagating
surface plasmons with large mode volumes, as opposed to
localized plasmons that support tight field confinement and
strong light−matter coupling. The ability to create site-
localized plasmon-emitter structures with high efficiency
remains a difficult problem.
Here we present a technique to generate quantum emitters

in two-dimensional semiconductors coupled to site-controlled
plasmonic nanopillars. A lithographically defined plasmonic
nanopillar induces strains in a tungsten diselenide (WSe2)
monolayer, leading to the generation of single-defect emitters
self-aligned to the plasmonic mode. By taking statistics over
many devices, we demonstrate an increased brightness and
enhanced spontaneous emission rate in the emitters coupled to
plasmonic nanopillars. These results confirm that plasmonic
nanopillars induce strong light−matter coupling. Our results
could find applications in nanoscale ultrafast single-photon
sources with controlled positions27,28 as well as in compact
nonlinear optical devices operating near the single-photon
level.29,35−38

Figure 1a shows a schematic of the plasmonic nanopillar
device design, which is composed of a silicon nanopillar with a

10 nm thick gold layer and a 6 nm thick aluminum oxide
(Al2O3) layer on top. We choose a gold film because it suffers
less from oxidation compared to other metals such as silver,
which is essential in bringing the emitters close to the high-
field region of the plasmonic structure. We introduce the Al2O3
thin film as a buffer layer to prevent quenching of the emission
of WSe2 monolayer,39 as well as to passivate it to reduce

spectral wandering and blinking.15 The nanopillar has a
diameter of 180 nm and an overall height of about 300 nm.
Figure 1b shows the numerically calculated scattering spectrum
of the plasmonic structure determined using a finite-difference
time-domain (FDTD) method (FDTD solutions, Lumerical),
which suggests a broadband enhancement to the emitters (a
typical emission range of these single defects is from 720 to
820 nm). The electric field distribution of the nanopillar has a
dependence on its wavelength. Figure 1c shows the simulated
profiles of electric field along the x-axis at 780 and 750 nm,
representing two distinct field distributions. The wavelength
dependence of the field profile leads to varied enhancements to
the emitters with different wavelengths and relative positions
to the nanopillar. To further confirm this, we also explore the
Purcell effect of an emitter sitting on top of the nanopillar by
varying its wavelength and position. To calculate the Purcell
factor, we compare decay rates of a dipole with and without the
plasmonic structure. Figure 1d concludes the calculated Purcell
factors, which exhibit strong dependence on both the
wavelength and the position of an emitter (see the Supporting
Information for an example calculation of the position
dependence, Figure S1). We notice that the scattering
spectrum in Figure 1b exhibits a broader line width than
that of the Purcell factors shown in Figure 1d. This is because
each curve in Figure 1d corresponds to the enhancement at a
particular position relative to the nanopillar, while the
scattering spectrum shows an overall effect averaged over
positions.
Figure 2a illustrates the device fabrication procedure. To

prepare the sample, we first spin coat negative resist (ma-N

2401, MicroChem) on the silicon substrate and pattern the
resist using e-beam lithography. We then transfer the pattern
from the resist to the silicon substrate using inductively
coupled plasma (ICP) dry etching. We deposit the gold layer
using thermal evaporation, followed by atomic layer deposition
to deposit the Al2O3 buffer. The final device consists of a 30 ×
30 array of nanopillars arranged in a square matrix, separated
by 4 μm. Figure 2b shows a scanning electron micrograph of a

Figure 1. (a) Schematic layout of a single plasmonic nanopillar; d =
180 nm, h1 = 6 nm, h2 = 10 nm, and h3 = 280 nm. (b) Numerically
calculated scattering spectrum of a single plasmonic nanopillar. (c)
Simulated distribution of electric field |Ex| at the top of a plasmonic
nanopillar at 780 nm (top panel) and 750 nm (bottom panel). (d)
Calculated Purcell factors of an emitter by varying its wavelength and
relative position to a nanopillar. Each curve corresponds to an emitter
with a particular distance from the center of the nanopillar. The dipole
orientation of the emitter is set to be parallel to the x-axis of the
coordinate as shown in the inset.

Figure 2. (a) Flowchart of the fabrication procedure of the plasmonic
nanopillars. (b) Scanning electron micrograph showing a part of the
array of plasmonic nanopillars. Scale bar: 2 μm. Inset: close-up of a
single plasmonic nanopillar. Scale bar: 200 nm. (c) Scanning electron
micrograph showing a single plasmonic nanopillar covered by a WSe2
monolayer. Scale bar: 200 nm.
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small region of the fabricated device, with the inset showing a
close-up of a single nanopillar. Following the pillar fabrication,
we transfer WSe2 monolayers synthesized by chemical vapor
deposition on a sapphire substrate,40 onto the pillars using a
polydimethylsiloxane (PDMS) substrate as an intermediate
transfer medium.41 Figure 2c shows a scanning electron
micrograph of one plasmonic nanopillar covered by a flake of
WSe2.
To characterize the sample optically, we first cool it to a base

temperature of 3 K using a closed-cycle refrigerator (attoDRY,
Attocube Inc.). We perform all photoluminescence measure-
ments using a confocal microscope. An objective lens with a
numerical aperture of 0.8 serves to both focus the excitation
laser and collect the emitted fluorescence signal. By adjusting
the collimation of the input laser, we control the size of the
focus to attain either a small diffraction-limited spot that
excites a single nanopillar or a large spot that excites an area
covering multiple pillars for wide-field imaging using a CCD
camera (Rolera-XR, Qimaging Inc.). A 715 nm long-pass
optical filter (Semrock Inc.) rejects the pump wavelength to
isolate the fluorescence signal. A single-mode fiber spatially
filters the signal to the diffraction limit and sends it to a grating
spectrometer (SP2750, Princeton Instruments) for high-
resolution spectral measurements. The output of the
spectrometer connects to a Hanbury Brown and Twiss
intensity interferometer that performs two-photon correlation
and lifetime measurements.
Figure 3a shows a photoluminescence intensity map of the

sample. We excite the sample using a continuous-wave laser
emitting at 532 nm, with a large excitation spot that covers
multiple nanopillars. Each nanopillar introduces a deformation
in the atomically thin WSe2 that covers it, leading to the
generation of strain-induced single defects in close proximity to

the plasmonic mode,17−23 as evidenced by the bright emission
from all nanopillars in the array. To confirm that the emission
originates from single defects, we measure the photo-
luminescence spectrum from a single nanopillar using a tightly
focused spot. Figure 3b shows the spectrum of a representative
nanopillar that exhibits a sharp emission line. The full width at
half-maximum (fwhm) of this emitter is about 0.55 nm. We
notice that the emission peak is asymmetric, which we attribute
to the phonon sideband.42,43 The spectrum of the observed
emitter is distinct from the photoluminescence coming from
the bare WSe2 monolayer area which exhibits a broadband
emission (see Figure S2). Depending on the emitter, we can
observe both singlet and doublet spectral emission lines (see
Figure S3). Both line shapes are consistent with previously
reported spectra from defects in WSe2 monolayer.8−12,44

Previous results attribute the origin of the doublet to be the
mixing of the two neutral excitonic states due to the electron−
hole spin-exchange interaction, while the origin of the singlet
remains unclear. Because emitters are formed by a strain-driven
process, the number of emitters in each nanopillar can vary.
Figure 3b shows an example where we observe only a single
peak corresponding to one emitter, while other pillars exhibit
multiple peaks (see Figure S4).
In Figure 3c we plot the emission intensity of the emitter

shown in Figure 3b as a function of the excitation power, using
a 532 nm continuous-wave excitation source. The intensity
shows a saturation behavior that is consistent with emission
from a localized single emitter. We fit the measured data to a
saturation function of the form I = IsatP/(Psat + P), where I and
Isat are the integrated intensity and the saturation intensity,
respectively, and P and Psat are excitation power and saturation
power, respectively. In the fit, we treat Isat and Psat as fitting
parameters and set a 90% confidence interval. From the fit we
determine a saturation power of 0.31 ± 0.18 W/cm2 (before
the objective lens) and a saturation intensity of 8.50 ± 0.88 ×
104 counts/s on the single-photon counting module. Because
of the discretization of the excitation power we use, there are
not many data points below saturation. Also, we note that the
emitter exhibits a fluctuation in its intensity, leading to the shot
noise in the measurement. However, the saturation behavior of
the emitter is very clear. Also, a reasonable number of data
points above saturation offers the accuracy of the fitting for the
saturation intensity.
To further validate that the emission originates from a single

defect and show that the defect acts as a quantum light source,
we perform a second-order correlation measurement. Figure
3d shows the second-order correlation measurement under
continuous-wave excitation of the emitter shown in Figure 3b.
By fitting the measured data to a double-exponential decay
function, we calculate a g2(0) = 0.3, which drops below the
threshold for photon antibunching of 0.5. This confirms that
the emission originates from a single photon emitter.
From the exponential fitting to the curve in Figure 3d, we

calculate a lifetime of 0.8 ns, which is shorter than the usual
lifetimes (a few nanoseconds) of single defects in WSe2
monolayer.8−12,17−21 We perform a time-resolved photo-
luminescence measurement to further confirm the lifetime of
the emitter. We excite the emitter using 710 nm laser pulses
with a 2 ps pulsewidth, aligning to the exciton of the WSe2
monolayer (see Figure S2), and directly measure the
fluorescence decay. By fitting the measured lifetime in Figure
3e to an exponential decay, we calculate a lifetime of 0.8 ns,
which matches the result derived from the second-order

Figure 3. (a) Photoluminescence intensity map of arrays of plasmonic
nanopillars covered by WSe2 monolayer. Scale bar: 4 μm. (b)
Photoluminescence spectrum of a representative emitter. (c)
Emission intensity of the emitter in panel b as a function of the
excitation power (black circles), fitted to a saturation function (solid
red curve). (d) Second-order correlation measurement of the emitter
in panel b (black circles) fitted to a double-exponential decay function
(solid red curve). (e) Time-resolved photoluminescence of the
emitter in panel b (black circles), fitted to a single-exponential decay
function (solid red curve).
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correlation measurement. The reduced lifetime suggests an
enhanced spontaneous emission rate (Purcell enhancement)
due to coupling to the surface plasmon mode. However, even
in a bare WSe2 monolayer the single-defect emitters exhibit a
large variation of lifetime and intensity (see Figure S5). Thus,
it is difficult to conclude from the measurement of a single
emitter whether a Purcell enhancement is present. To do so
requires a statistical average of the lifetimes of many emitters.
We perform these statistics using measurements from 46
different emitters (see the Supporting Information for
examples of lifetime measurements, Figure S6). We compare
the lifetimes of these emitters to a similar number of emitters
in two control groups, one in the bare material with no
nanopillars and the other with nanopillars that are not coated
with gold and therefore exhibit no plasmonic mode confine-
ment.
Figure 4a plots the distribution of lifetimes of the emitters in

the plasmonic nanopillars, where we observe an average
lifetime of 2.2 ± 1.5 ns, with a median lifetime of 1.8 ns. As a
comparison, Figure 4b plots the distribution of lifetimes of 31
emitters in the nonplasmonic nanopillars (bare silicon
nanopillars), exhibiting an average lifetime of 5.2 ± 2.1 ns
with a median lifetime of 4.9 ns. Similarly, the 39 single-defect
emitters naturally existing in the WSe2 monolayer show an
average lifetime of 5.3 ± 2.3 ns with a median lifetime of 5.0
ns, shown in Figure 4c. The observed average reduction in the
lifetime of 2.4 indicates that the plasmonic nanopillars induce a
Purcell effect.
We also statistically investigate the photoluminescence

emission intensities of the single defects. To measure the
emission intensities, we excite the emitters using a continuous-
wave laser at 710 nm and measure the emission intensities at
saturation using the spectrometer. Figure 4d−f plots the
distribution of emission intensities of three groups of emitters.
The emitters in close proximity to the plasmonic structures
exhibit a median intensity of 4.4 × 104 counts/s. The emitters
induced by nonplasmonic nanopillars and the natural emitters
exhibit a median intensity of 2.3 × 104 and 0.6 × 104 counts/s,
respectively. The observed increase in the emission intensities
of the plasmonic nanopillar-induced emitters, combined with

the increased decay rate, indicate an enhanced radiative decay
rate of the emitters due to the coupling to the surface plasmon
mode. This also excludes the possibility that quenching plays a
major role in the modified lifetime, because otherwise we
expect to see reduction both in the lifetime and brightness of
the emitters.
Because of the large variation in the lifetime and intensity of

the uncoupled emitters, observing a statistically significant
correlation between the lifetime and intensity of the coupled
emitters is extremely difficult (see Figure S7). Only when we
average the lifetimes and intensities of all emitters do we obtain
sufficient statistics to be able to claim a clear effect. When the
emitters are subdivided into smaller groups by lifetime or
intensity, the noise is large enough to wash out any significant
trend. Also, we do not observe any clear correlation between
the wavelength and radiative enhancement (see Figure S8).
This is likely because the nanopillar resonance is broad
compared to the inhomogeneous distribution of the emitters
and also because the natural emitters exhibit large variation in
lifetime so any underlying wavelength-dependent changes get
washed out. Besides the variation in lifetime and intensity, we
also observe a large fluctuation in the line width of these
emitters (see Table S1). However, the emitters in the
plasmonic nanopillars show a similar distribution in the line
width as compared to the emitters in the other two control
groups, which suggests that the line width is dominated by
spectral wandering and the phonon sideband.
In conclusion, we presented a technique to generate

quantum emitters in atomically thin semiconductors coupled
to site-controlled plasmonic nanopillars. The lithographically
defined plasmonic nanopillar induced strains in the WSe2
monolayer, which formed single-defect emitters in close
proximity to the plasmonic structure. Studies of multiple
nanopillars revealed emitters with statistically shortened
lifetimes and increased emission intensities as compared to
those not coupled to plasmonic structures, indicating Purcell
enhancement. The technique we presented here could be used
to realize ultrafast nonclassical light sources27,28 and nonlinear
photonic devices.29 The capability to control the position of
the light source enables device integration with more complex

Figure 4. (a−c) Statistical comparison over lifetimes of single-defect emitters in WSe2 monolayers. Distribution of lifetimes of (a) single defects
induced by plasmonic nanopillars, (b) single defects induced by nonplasmonic nanopillars, and (c) natural single defects. (d−f) Statistical
comparison over photoluminescence emission intensities of single-defect emitters in WSe2 monolayers. Distribution of intensities of (d) single
defects induced by plasmonic nanopillars, (e) single defects induced by nonplasmonic nanopillars, and (f) natural single defects.
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quantum optical circuits and offers the possibility for scalable
device fabrication. Although such a technique does not
guarantee deterministic generation of emitters such that each
nanopillar creates one single emitter, one can advance this
technology toward deterministic arrays by spectrally filtering
individual emitters from each post and incorporating spectral
tuning techniques to tune them to the desired wavelength.45

The technique is versatile and could be applied to construct
coupled devices composed of various plasmonic nanostruc-
tures24 and single defects in diverse atomically thin
materials.7−16
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