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At the outbreak of the animal epidemic disease, farms that recover quickly from partially infected state can delay or even suppress the
wide spreading of the infection over farm networks. In this work, we focus on how the spatial transmission of the infection is affected
by both factors, the topology of networks and the internal resilience mechanism of nodes. We first develop an individual farm model
to examine the influence of initial number of infected individuals and vaccination rate on the transmission in a single farm. Based
on such intrafarm model, the farm network is constructed which reflects disease transmission between farms at various stages.
We explore the impact of the farms vaccinated at low rates on the disease transmission into entire farm network and investigate
the effect of the control on hub farms on the transmission over the farm network. It is shown that intensive control on the farms
vaccinated at low rates and hub farms effectively reduces the potential risk of foot-and-mouth disease (FMD) outbreak on the farm

network.

1. Introduction

The epidemic spreading in networks has attracted growing
attention in recent years [1-3]. One of the main reasons for
studying the spread process in networks is reproducing the
actual dynamics of the disease and finding an effective control
strategy to eradicate the infection. The spreading of infectious
animal disease between farms exhibits the vulnerability of the
community structure, which has been mostly investigated in
terms of the network topology [4-6]. However, whether or
not the infection is suppressed before gaining “momentum”
to spread over networks also depends on the nodes’ responses
to the epidemic [7]. If each farm at a node is vaccinated at a
high level and can recover from accidental and partial infec-
tion, such resilient mechanism can delay or even suppress the
wide spreading of the infection.

Among animal infectious diseases, foot-and-mouth dis-
ease (FMD) is an economically important disease. Mathe-
matical models have been developed to simulate the possible
progress of FMD transmission under various scenarios,
so that relevant researchers and agents can use them for

implementing control policies to prevent and reduce the risk
of the disease outbreak. A discretized deterministic SLIR
model, where S, L, I, and R denote the susceptible, the
latent, the infectious, and the recovered states, respectively,
was developed to describe FMD transmission in a farm
[8]. An SVLI model, where V denotes the vaccinated state,
was considered to investigate FMD transmission in a farm
[9]. The authors investigated the stability of the disease-
free equilibrium and performed simulations to illustrate the
impact of vaccination and culling on controlling the disease
in a farm. Concerning FMD transmission between farms,
Keeling et al., using their developed individual farm-based
stochastic model, found that the spatial distribution and size
of farms have a certain effect on the pattern and regional
variability of FMD outbreaks [10] and investigated the effect
of vaccination and culling on control of FMD transmission
[11]. Moreover, optimal reactive vaccination strategies were
investigated in [12] and various vaccination strategies were
studied for stochastic SIR model on a random network
of social contacts with household structure [13]. Farm-to-
farm contacts due to movements of operators and vehicles
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have long been acknowledged as a relevant factor in disease
transmission in livestock systems [14-16]. It is observed that
the spread of infections can be tremendously strengthened on
such contact networks. Particularly, some sorts of complex
networks that connect susceptible/infected nodes are prone
to the epidemic spreading with the persistence of infections
regardless of the spreading rates [17, 18]. The bond percolation
on random networks has been used to derive the basic epi-
demiological quantities and to predict disease transmission.
A brief overview of the compartment SIR model in different
type of the contact network can be found in [19, 20] and a
comprehensive review for modeling FMD transmission in
and between farms is done in [21].

In this work, we want to find how much the mutual
dependence of farms weakens their resistance to external
infections. With intensive and accumulative livestock farm-
ing in the industrialized world, farms are more densely
connected even in the distance. Farms that are closely
linked and share the common resources are generally more
vulnerable to disease than an isolated farm. We are going
to derive the minimum vaccination level to protect a farm
community from sporadic exposure to external infectious
source. One of the key problems in the epidemiology is how
to effectively control the transmission of infectious disease
by immunization of the population. The most undesirable
situation is internalization or localization of the disease
even under regular practice of vaccination. This implies the
network is constantly “echoing” infections through highly
connected nodes, resulting in continual reinfection of a
constant fraction of farms. We are especially interested in
studying under what conditions the infectious animal disease
persists and becomes localized under regular vaccination
in the intra- and interfarm model. However, besides the
important role of the hub farms to stop epidemics in scale-
free networks, it is also crucial to know how extensively the
adverse effect is created by the low-vaccinated farms.

This work focuses on how the spatial transmission of
infection is affected by both factors, the topology of networks
and the internal resilience mechanism of nodes. We develop a
network-based model for transmission of infectious diseases
of livestock, with a focus on internal structure of each
node (farm). The model characterizes two distinct dynam-
ical regimes: intrafarm dynamics where infection spreads
fast among homogeneously mixing population following
conventional compartment model and interfarm dynamics
where the disease transmission occurs rather slowly along
farm-to-farm contact networks. Throughout this paper, we
exclude culling and other control measures, since we focus
on investigation of the effect of the vaccination on the
transmission of FMD in the farm network. All simulation
results are performed by MATLAB.

2. Robustness of Networks with
Resilient Nodes

Resilience of networks implies how robust a network is to
accidental or intentional attack on its vertices. In many mod-
els of epidemic spreading, the close relevance of network topol-
ogy in the burst of the epidemics has been confirmed [17, 22].
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The susceptible-infected-susceptible (SIS) model has
been studied in a network representing potential transmis-
sion of the infection. It turned out that, for a scale-free (SF)
network, the threshold for epidemic spreading is null in the
infinite network limit. In other words, the epidemics in a
sufficiently large SF network may never be eradicated even
for low spreading rates. However, this two-state model is not
directly applicable to farm networks, as the nodes on such
networks have more complicated internal structures. One
needs to refine the inter- and intrafarm spreading process
to deal with multitude of animals in the nodes at diverse
infection stages.

In order to develop such hierarchical model of epidemic
spreading, we first begin with a simple continuous SIS
network model. The model will be elaborated with more
realistic stages in the following sections. Suppose there are N
farms and each farm prevalence, say x;,i = 1,..., N, takes a
continuous value between 0 and 1 where 0 means absence of
infection at the farm i and 1 means fully infected state; that
is, all individuals in the farm are infected. Let A denote an
adjacency matrix whose (i, j)th entry is 1 if the farms i and
j are adjacent and the transmission occurs from the farms
j to i, and 0 otherwise. The degree of ith farm is defined

as k; = Z;’EiAij, which means the number of connected

neighbors of the ith farm. Then, the dynamics of the farm
prevalence can be formulated as

N
x!zfi(xi)+ZAijh(xi,xj), i=1,...,N. (1)

J#

Here f;(x;) represents the internal epidemic development
in the farm i and h(x;, x;) represents the transmission rate

function from the farm j to the farm i. If fi'(O) < 0, the
farm i is said to be resilient from infection with the resiliency
r;=— fl.' (0). This implies that the farm, if isolated, can recover
from small infectious perturbation. In our approach, we
assume that the farm-to-farm transmission of the infection
is proportional to both of the prevalence at the source
farm and the susceptible level at the target farm. Hence the
transmission rate function is set as

h(xi,xj) =Bx;(1-x,), (2)

where 8 is the transmission rate. We want to see under
what condition farm network (1) with (2) maintains the
synchronized disease-free state. The following theorem shows
that a community of resilient farms is robust to infection as
long as the network is not too dense and the transmission rate
is low.

Theorem 1. Consider the farm network defined by (1) and (2)
that consists of resilient farms. Let k,; = max; Z;VAI-J» be the
maximum degree of the farms, and let r,, = min;(— fi'(O)) be
the minimum resiliency. Then the collective disease-free state
(x15...,x5) = (0,...,0) is asymptotically stable for 0 < <
Tyl K-

The proof of Theorem 1 is found at Appendix. The overall
resiliency of a farm network depends on the resiliency of
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FIGURE 1: Mean farm prevalence (x;) according to the transmission
rate 3 in a scale-free network.

individual farms, the network density, and the transmission
rate. Figure 1 depicts the mean farm prevalence at equilibrium
of thousand farms in a scale-free network according to the
transmission rate 3. Here the simple internal process function
fi(x) = —x was used to model intensive practice of vaccina-
tion which leads to exponential decay of the infection ratio.
One can observe that all the farms remain disease-free where
B is less than a critical value around 0.045. In this parameter
regime, even if some of the farms are simultaneously infected,
the epidemic disease is soon eradicated from the network
before it spreads further. However, such collective robustness
does not hold and some of the farms fall in an endemic
state if the transmission rate is greater than the critical
value.

Although model (1) is a network-based extension of an
SIS model, it is still too simple to deal with multitude of
animals of varying epidemic states in farms. In the following
sections, we develop a hierarchical system that combines
a conventional compartment epidemic model (intrafarm
model) with a farm network model (interfarm model). The
new model enables us to study how robust a farm network is
with respect to the vaccination strategies and to what extent a
farm network can endure sporadic exposure to external virus
attack.

3. Intrafarm Model for FMD Transmission

Our intrafarm model for FMD transmission includes seven
compartmental states; the susceptible, latently infected, infec-
tious, and recovered states are denoted by S, L, I, and
R, respectively, and the vaccinated susceptible, latent, and
infectious states are denoted by V,, V;, and V, respectively.
The rate of vaccination followed by antibody formation is
included in the parameter y and the rate of transition from
V. to S is considered in the parameter ¢, which is the rate
at which the vaccine wanes off. The transition from Vg to
V, reflects the fact that the vaccinated individuals in V§ can

3
TABLE 1: Descriptions and values of parameters.
Symbol Description Value Reference
B Transmission rate Various
1/« Latent period 1-7 [24]
1]y Infectious period 1-10 [24]
Latent period for the
Vew vaccinated individuals 1-9 Assumed
Infectious period for
/v the vaccinated 1-8 Assumed
individuals
Period for the
1/6 recovered state 90-400 [25, 26]
Transition rate from S 01 Assumed
to Vg
Transition rate from
VitoS 0.001 [9]
Reduced
P susceptibility factor 0-1 271
. Reducefd infectivity 0-1 [27]
actor
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FIGURE 2: Intrafarm model.

be infected with a reduced susceptibility factor p. Moreover,
the individuals in V; have a reduced infectivity, which is
considered with the reduced infectivity factor e in Q = I +
€V;. An individual in the recovered state R has antibody for
averagely 1/8 days after recovery from the disease and then
becomes susceptible to the disease.

The schematic diagram of the model is illustrated in
Figure 2.

In Figure 2, the parameters 1/« and 1/y denote the
latent and infectious period, respectively, and the parameter
B denotes the transmission rate, which depends on the total
population of livestock M [23]. Moreover, the vaccinated
individuals have latent and infectious period, 1/a, and 1/yy,,
respectively, and the reduced infectivity and susceptibility
factors € and p, respectively. It is assumed that 1/, > 1/«
and 1/y, < 1/y due to the effect of the vaccination. The
parameter description and values are given in Table 1.



The transmission dynamics of the model is described by
the following ODE system:

S =-BSQ-yS+ ¢V, + IR,

V, = —pBV,Q +yS - ¢V,

i =pBsSQ-al,
Vi, = pBViQ -y Vi, 3)
I=aL-yI,

VI =ayV, - WVp

R =yI +y,V; -8R,

where Q =1 +€V].

The basic reproduction number denoted by R, which
reflects the stability property of the disease-free equilibrium,
can be computed by using the method of the next generation
matrix [28].

Theorem 2. The basic reproduction number R, of (3) is

Rozg(ﬁ)mf’:_f(ﬁ)m @)

where M is the total population of livestock.

For the proof of Theorem 2, refer to Appendix. It is
well known that if R, < 1, then the model has a locally
asymptotically stable disease-free equilibrium and if R, > 1,
then the disease-free equilibrium is unstable [29]. However,
the condition R, < 1 is not necessarily a sufficient condition
for disease elimination. Even when R, < 1, an epidemic
model with vaccination may have a backward bifurcation,
for which a stable disease-free equilibrium and a stable
endemic equilibrium coexist [30, 31]. Here we investigate
the bifurcation dynamics of system (3). Since we are mainly
interested in the influence of the vaccination rate parameter
y on the disease transmission, we focus on the bifurcation
dynamics of system (3) according to different v values.

Figure 3 depicts a bifurcation diagram of system (3) in
a certain range of y values. For the simulation, we assume
M = 1000 and set the values of the parameters except v as
follows: ¢ = 0.001, § = 0.01, « = 0.5,y = 0.25,5 = 1/90,
p = 0.2,and € = 0.2 and the vaccination effect has a two-
day delay from V; to V; and a two-day early recovery from
Vi to R, so that oy, = 0.25, y, = 0.5. This setting will be
used throughout the rest of the paper. In Figure 3, one can
see that if y > 0.327 (or R, < 0.9195), the farm has the
stable disease-free equilibrium. If ¢ < 0.195 (or R, > 1), the
farm has the stable endemic equilibrium. In the intermediate
regime 0.195 < y < 0.327 (or 0.9195 < R, < 1), the farm
may end up either disease-free or endemic, depending on
the initial state. That is, in the range of 0.195 < v < 0.327,
the model undergoes a backward bifurcation in the disease
transmission.
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FIGURE 3: Bifurcation diagram of the intrafarm model (3): backward
bifurcation occurs for 0.195 < w < 0.327. The red dotted and
blue solid curves denote the unstable and the stable equilibria,
respectively.

4. Multiple Connected Farms

Our approach conceives a set of N farms in a region as a
network with connections between farms in the interfarm
model. Each node of the network symbolizes a single farm,
of which internal structure is described by the compartment
model from the previous section. A link represents a relation-
ship between farms that involves repeated contacts through
which infections can spread.

There are two types of routes of between-farm transmis-
sion: direct infection is due to movement of infected animals
and indirect infection occurs by sharing contaminated equip-
ment, vehicles, workers, and veterinarians [32, 33]. We extend
the assumption adopted in the intrafarm model and claim
that the rate of farm-to-farm transmission by both direct and
indirect contacts is basically proportional to the number of
the infected and the susceptible ones. More precisely, the rate
at which the infections in farm A cause new infections in
farm B is 8;Sgl, where Sy and I, are the number of the
susceptible ones in farm B and the number of the infected
ones in farm A, respectively. Here 3, denotes the farm-to-
farm transmission rate, which should be very small compared
to the transmission rate 8 in the intrafarm model. f3; is
estimated as the value between 107 and 10™* per day [34].

Given a realization of some farm networks, one can
simulate the dynamics of weakly coupled compartmental epi-
demic models on nodes. In the previous section, we observe
that an isolated vaccinated farm has a limited resiliency
and can return to the disease-free state for small infections.
However, such recovering ability of single farms is generally
weakened when connected together, as they can play a role
of a temporal repository of disease to one another. Figure 4
illustrates the change in the bifurcation diagram occurring
on connection of multiple farms. It is notable that the upper
branch representing stable equilibrium states is gradually
shifting with the number of connected farms. This implies
that a higher rate of vaccination v is required to maintain a
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FIGURE 4: Shift of bifurcation branch with the growing number
of farms: only the stable upper branches are displayed. The y-axis
denotes the average number of infections per farm.

disease-free state in a larger farm community. For example,
four fully connected farms should have v > 0.337 to remain
healthy, while a single farm needs v > 0.327.

Different from an isolated farm whose steady state may
depend on its initial state, a collective state of multiple farms
is less sensitive to the initial condition. Figure 5 shows that
the backward bifurcation in the single farm model gradually
evolves into a transcritical bifurcation as the number of
directly connected farms increases. One can see that this
change raises the minimum vaccination level to protect the
farm community higher.

The dissolution of the backward bifurcation occurs with
increase of directly connected neighbors and is also enhanced
by networking. The steady states of the collective farms largely
depend on the connection topology. In the remaining part
of the work, we use scale-free (SF) networks which are
considered to be the best suitable models for social networks,
including the spread of epidemics [17, 35, 36]. Recent studies
have shown that many transit systems found in different areas
around the world exhibit scale-free structure [37-39]. This
observation partially justifies the use of scale-free networks
for the interfarm model, in that one of the major routes of
infection is the livestock-related vehicle movement.

SF networks follow the degree distribution P(k) ~ k™',
r > 0 where k is the degree of nodes, and they are
characterized by the existence of the small number of nodes
with many connections (hubs) and the large number of nodes
with few connections. The SF network that we use in this work
consists of N = 1,000 farms. We set the average degree (k)
of the network to be 10. Since every farm in the network is
connected to 10 other farms in average, it is understandable
that the average infection per farm is similar to that of 10
fully connected farms as in Figure 6. However, the backward
bifurcation of the 10 farm models is “smeared out” in the
network, raising the minimum vaccination level for disease-
free states from 0.36 to 0.43. This implies that a network,

even when it has rather sparse topology, can provide more
extensive potential repository of disease.

5. Sporadic Exposure to External Infections

We are interested in how robust overall immunity of vacci-
nated farms is and how they maintain the collective disease-
free state from the continual external infections. We assume
the Poisson infection from the environment following the
Poisson distribution with mean A [40, 41]. This implies that
each farm, besides horizontal infections from other farms in
the network, is also exposed to the sporadic external infection
at the averaged rate A in a day.

In this section, the described model is used to run a set
of simulations of epidemic for 10 years. We assume that the
farm-to-farm transmission rate is B; = 5 x 107> [34]. Each
farm is assumed to be exposed to an external infection at the
Poisson rate of average A = 10~ a day. Although this estimate
for the parameter A may not reflect real environmental
settings, we rather focus on the relative ratio between the
inter- and intraparameters and study qualitative reactions of
the farm networks to external infections.

In a recent outbreak of FMD in Korea, it has been
reported that some farms have antibody formation rate less
than 20% [42], which is far below the expected rate (about
97.5% for cattle and about 70% for pig) formed by Korea
governmental standard vaccination policy. This low rate of
antibody formation followed by the negligent vaccination is
presumed to be one of the causes of the sudden outbreak and
transmission of the disease between farms.

To investigate how the farms vaccinated at a low rate (“bad
farms”) affect the disease transmission in the farm network,
we assume two groups of farms; one is the group A of farms
vaccinated at a high rate (y = 0.90) and the other is the group
B of farms vaccinated at a low rate (y = 0.25). Figure 7 shows
that if the ratio of group B is small, less than 10%, then a
massive outbreak of the disease does not occur in the farm
network, but if it is big, more than 20%, the outbreak in the
farm network occurs and the number of infected individuals
increases in proportion to the ratio of the group B. This
implies that even if most of the farms are well-vaccinated,
that is, if most farms comply with the governmental standard
vaccination policy, a small portion of bad farms seriously
weakens the immunity of the entire farms. They can easily
trigger the outbreak of the disease and moreover spread it
long enough until other healthy farms in the network are
infected. This may lead to a continual recurrent infection
state. Thus, active surveillance and strong control about bad
farms are required to prevent such permanent localization of
the disease.

The phase-transition-like jump from zero to a linearly
increasing line in Figure 7 can be understood in terms of the
hub infection: if the ratio of bad farms is set to be high, there is
more chance for them to include one of the hubs. In spreading
of disease over networks, it is well known that contamination
of the hubs substantially damages the resilience of networks
[43-45]. We further investigate how the control of hub farms
is effective for preventing the long-lasting spread of FMD



6 Complexity
30 30 30
25 25 25
2 2 2
£ 20 £ 20 £ 20
0 1 =1
& & &
£ 15 £ 15 £ 15
5 o :
510 5 10 510
Z = =
5 5 5
0 0 0
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
v Y v
(@ N=1 (b) N=10 (c) N=25
FIGURE 5: Dissolution of the backward bifurcation for fully connected farms: only stable branches are displayed.
20 T T T T 9 T T T T T T T
18 \ 1 8t
16 1 \\\ 1 7|
14 A\ 1 .
2 A E L
S 1} R ] 2
g \\\ é 5r
= 10r \ 1 g
ko
$ gt N\ ] S af
) \ g
2 6f N\ ] Z 3t
\
4 Y 1 2k
2 1 1k
O T O ° bl & 1 (] 1 Ld 1
0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 015 02 025 03 035 04
% Ratio of low-vaccinated farms

—— Scale-free with (k) = 10
--- 10 completely connected

FIGURE 6: Smearing effect in a scale-free network: while the mini-
mum vaccination level for disease-free states of 10 fully connected
farms is 0.36, it increases up to 0.43 for a scale-free network with the
same average degree.

in the farm network. A hub farm means a farm with heavy
traffic frequency to other farms. We classify top 5% farms
with highest degree as hub farms and observe their influence
on the immunity of the whole networks according to their
values of y. Vaccination of the other 95% of nonhub farms is
set to be relatively low at y = 0.30. In Figure 8, we see that
a sufficient vaccination (more than v = 0.46) for only top
5% hub farms is very effective for preventing the transmission
between farms, although other nonhub farms have a low rate
of vaccination. The influence of the hub vaccination is clear,
especially compared to the random vaccination in which 5%
of randomly chosen farms are vaccinated. This implies that
a very efficient way to reduce the potential risk of FMD
spread is to execute an urgent and intensive control on hub
farms.

FIGURE 7: Average number of infectious livestock according to the
ratio of low-vaccinated farms. For each simulation, a corresponding
ratio of farms is randomly picked and vaccinated at a rate as low as
¥ = 0.25.
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FIGURE 8: Average number of infectious livestock according to v in
top 5% hub farms.
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6. Conclusion

In this paper, we investigated how the spatial transmission of
the FMD infection is affected by the two factors; the network
topology and the internal resilience mechanism of nodes. We
first developed a mathematical model for FMD transmission
in farm networks and investigated the effect of vaccination on
the control of outbreak of FMD.

While previous works on disease spreading in networks
have mostly focused on the effect of the transmission rate,
we take a closer look on the role of the internal mechanism
of the nodes, especially their recovering ability induced by
vaccination. We derived the vaccination level that is required
to protect a farm community from sporadic exposure to
external infectious source. Since most parameters used in
the model are based on the previous studies and actual
data, we believe that the result may suggest some practical
implications in the FMD control in regional scale.

We found that even in the case that the number of farms
with low vaccination rates or bad farms is small compared to
the entire number of farms, the bad farms not only trigger
an epidemic outbreak, but also hold FMD virus long enough
to contaminate other healthy farms. This suggests that active
and preemptive surveillance should be implemented for bad
farms to prevent internalization of the disease. Moreover, we
found that increasing the vaccination rate for entire farms by
more than an appropriate level (0.35 or more) can prevent
transmission of FMD between farms in a long time scale
(10-year). It is also observed that a moderate increase in
vaccination rate for hub farms reduces very effectively the
potential risk of FMD transmission to other farms. This
finding suggests that when there is a sudden outbreak of
FMD and an urgent control is needed to prevent massive
outbreaks of the disease over farms, intensive and prompt
vaccination for hub farms is an efficient and proper control
measure.

Previous researches pointed out that some epidemic
models with vaccination can have a backward bifurcation
[30, 31, 46]. We observed that such a backward bifurcation
gradually evolves into a transcritical bifurcation, raising the
minimum vaccination level to protect the farm community
higher. The dissolution of the backward bifurcation occurs
with increase of directly connected neighbors and is also
enhanced by the smearing effect of networking.

In scale-free networks, effectiveness of the vaccination on
the hub nodes is known [43]. However, the hub vaccination
for the epidemic diseases, especially for infectious human dis-
eases, is difficult to implement since it is a challenging work to
identify potential hub nodes for the disease transmission [47].
In case of FMD transmission, it is a possible work to identify
hub nodes when the farm information such as farm location
and livestock movement is available. In South Korea, actual
geographical farm information and livestock-related vehicle
movement data are available from Korea Animal Health
Integrated System (KAHIS). As an extension of this work, we
plan to construct a network-based model for describing FMD
transmission between farms in Korea, using the farm-related
actual data obtained from KAHIS.

Appendix
A. Proof of Theorem 1

The Jacobian of system (1) at (0,...,0) is

3 N
Jij = a_x, <fz (x;) +:Bij (1- xi)> A1)

J#i
!
= £1(0)8; + BA,;.

Note |J;| = =f/(0) < r,, and Y7, J;] = BY 3 Ay < Bl
Hence J is a strictly diagonally dominant matrix for 0 < f3 <
7,u/kas- Since J’s all diagonal elements are negative, from the
Gershgorin circle theorem, the real parts of its eigenvalues are
negative.

B. Proof of Theorem 2

We derive the basic reproduction number R, from system (3),
using the method of the next generation matrix. We first find
the matrices

00 BS* pS'e
[ 00 pBVS pBVse
00 0 0 ’
00 0 0
1
-~ 0 0 0 (B.1)
« 1
0O — 0 O
- o
vi=l 1
Z 0 =
Y Y
1
0 L 0 —
v Yv
and the next generation matrix
pS*  BS*e BST  fS'e
Y )a% Y )a%
% Ve Ve Vie
— PBVs  pBVse pBVs pPVs . (82
Y )a% Y )a%s
0 0 0 0
0 0 0 0

where §* and V{ denote the values of S and Vg at the
disease-free equilibrium, respectively. Note that the basic
reproduction number for system (3) is the spectral radius of
FV™'. We compute the spectral radius of FV" as
ES* + @VS*.
Y W
Since §* = (¢/(y + $))M and Vg = (y/(y + ¢))M where M
is the total population of livestock, we obtain

Bt e 2 )

(B.3)

(B.4)
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