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Abstract: Recently, self-healing technologies have emerged as a promising approach to extend the
service life of social infrastructure in the field of concrete construction. However, current evaluations
of the self-healing technologies developed for cementitious materials are mostly limited to lab-scale
experiments to inspect changes in surface crack width (by optical microscopy) and permeability.
Furthermore, there is a universal lack of unified test methods to assess the effectiveness of self-healing
technologies. Particularly, with respect to the self-healing of concrete applied in actual construction,
nondestructive test methods are required to avoid interrupting the use of the structures under
evaluation. This paper presents a review of all existing research on the principles of ultrasonic test
methods and case studies pertaining to self-healing concrete. The main objective of the study is to
examine the applicability and limitation of various ultrasonic test methods in assessing the self-healing
performance. Finally, future directions on the development of reliable assessment methods for
self-healing cementitious materials are suggested.
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1. Introduction

Concrete is one of the most resilient construction materials in the world. However, cracks in
concrete due to various reasons may result in serious durability and serviceability problems. Repair and
maintenance costs have continuously increased in recent years, and thus, many researchers have
tried to develop crack control and self-healing technologies [1–9]. Although self-healing concrete
construction requires high initial material expenses, it has a very large advantage from the lifecycle
cost viewpoint [1].

To satisfy this need for self-healing concrete, researchers have concentrated on the development
of engineered self-healing technologies using organic or inorganic chemical agents [10–12],
microcapsules [13–15] and bacteria [16–18] over the last decade. Additionally, several studies have
examined the use of super absorbent polymer as a potential self-healing agent due to its ability to
expand in volume on absorbing water, which can contribute to crack sealing [19,20]. To catalyze the
production of crack-filling materials, some researchers used fiber-reinforced concrete or engineered
cementitious composites (ECC) and investigated the effect of crack width control on self-healing
performance [6,21–25].

With the ongoing development of self-healing technologies for concrete, there is a growing need
to develop methods that are able to accurately evaluate the effectiveness of these technologies [26–29].
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Possible evaluation methods corresponding to different self-healing objectives are classified as
follows. First, geometric changes (e.g., filling and closing) of surface cracks from self-healing
may be visually evaluated by optical microscopy or scanned to a deeper extent by computed
tomography (CT) [10,11,14,15,18,20,27,29–32]. Second, the recovery in the mechanical properties
(e.g., stiffness and strength) of self-healing concrete may be evaluated by compression [13,28,33,34],
pure tension [21,22,25,35–38] or bending tests [11,13,17,18,30,39–46]. Third, the change in the durability
properties may be assessed by water permeability [12,16,25,26,32], air permeability [47] or ion
diffusivity tests [23,24,32]. Finally, the relative change in the material properties due to self-healing
may be evaluated through measurements of ultrasound characteristics [11,14,15,18,22,26–30,38–46,48],
electrical impedance [24] and resonance frequency [23,24]. The development of reliable evaluation
methods is important in achieving ultimate success in the development and application of
self-healing concrete.

However, current evaluations of the self-healing technologies developed for cementitious
materials are mostly limited to lab-scale experiments for inspecting changes in surface crack width
(by optical microscopy) and permeability. Furthermore, there are no unified test methods established
for assessing the efficiency of self-healing. With respect to the application of self-healing concrete
in actual construction, nondestructive test methods are required such that evaluation tasks do not
interrupt the use of structures [49,50].

Over the last decade, self-healing performance has been assessed by various ultrasonic
nondestructive test methods (Figure 1), which include ultrasonic pulse velocity (UPV)
measurement [11,14–18,22,30,33,34,48], surface-wave transmission [26], diffusion in ultrasound [27],
coda wave interferometry [28,29] and acoustic emission (AE) [39–46]. However, the applicability and
limitation of these test methods for specific cases (e.g., self-healing objectives and types of damage and
cracks) are rarely investigated to date.

Given the above-mentioned concerns, the main objective of this study is to examine the
applicability and limitation of various ultrasonic test methods in assessing the effectiveness of
self-healing technologies developed for cementitious materials. This is performed by thoroughly
reviewing the principles of ultrasonic test methods and case studies related to the application of
these methods on self-healing concrete. The applicability and limitation of the ultrasonic test methods
are analyzed based on the following five criteria: Evaluation of crack size, evaluation of regained
mechanical properties (e.g., strength and stiffness), evaluation of regained durability properties
(e.g., permeability and chloride-ion diffusivity), appropriate self-healing agents and assessment of
in situ structures. Finally, future directions on the research and development of reliable assessment
methods for self-healing cementitious materials are proposed.
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2. Ultrasonic Nondestructive Evaluation Methods

2.1. Ultrasonic Pulse Velocity (UPV)

The UPV method is widely used to detect internal defects, and estimate crack depth and
compressive strength for concrete structures. Therefore, standard test methods for UPV measurements
are well established and are specified in ACI 228.2R [50] and ASTM C597 [51]. According to the
standards, the UPV of the first arriving wave (longitudinal wave) is determined through a specific
wave path. In this method, transducers with a frequency range between 20 and 100 kHz and a center
frequency of 54 kHz are typically used. Two transducers are attached to the surface of concrete,
and then the transmission time and velocity of longitudinal waves between the transducers are
measured. The transducer arrangement for UPV inspections can be classified into three categories:
direct transmission (cross probing), semi-direct transmission, and indirect transmission (surface probing).

Figure 2 shows the change in the travel distance of an ultrasonic wave signal across an initially
generated crack and from a partially closed to a fully closed crack. In the evaluation of self-healing
using the measurements of UPV, the ratio of relative velocity and change in transmission time may be
used as evaluation parameters to estimate the degree of damage, healing ratio and crack depth.
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Ferrera et al. [11] evaluated autogenic and engineered self-healing of normal concrete in the
presence of crystalline admixtures using relative UPV measurements before damaging and after
self-healing. Van Tittelboom et al. [16] investigated the potential of bacteria-based self-healing agents
to compare performances of original repair techniques using grout and epoxy. The study [16] compared
the change in transmission time before and after self-healing of the cracks. The authors confirmed that
there was a recovery of tightness through UPV measurements when using bacteria-based self-healing
agents immobilized in silica gel. Williams et al. [18] measured the change in UPV transmission
time, with the test results confirming an 8%–30% flexural strength recovery by bacteria-added mortar.
Zhu et al. [22] investigated autogenous self-healing of ECC under freeze-thaw cycles damaged by direct
tensile tests. Watanabe et al. [48] evaluated self-healing effects in different volumes of fly ash-replaced
concrete damaged by freeze and thaw cycles by using ultrasonic tests. These authors utilized the
relative amplitude of ultrasonic waves, which is defined as the amplitude of waves normalized after
healing with respect to the amplitude of waves in the pure specimen.

Zhong and Yao [33] evaluated the self-healing ability of normal and high-strength concrete
damaged under compressive loads at different ages using UPV measurements. Self-healing ratio is
defined using compressive strength at the loading and after self-healing. The authors identified that
the degree of damage was influenced by the initial strength of the concrete and that the threshold value
of normal-strength concrete exceeded that of high-strength concrete. Xu and Yao [17] investigated the
performance of non-ureolytic bacteria through pulse velocity. In this study, the previously proposed
degree of damage [33] was used, and the healing ratio was defined to quantify the change in UPV.
Elmoaty [34] investigated the self-healing efficiency of polymer-modified concretes with different
types and doses of polymers and water cement ratios as test parameters using UPV measurements.
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Time-of-flight diffraction (TOFD) methods have been used to estimate the recovery of crack
depth. This provided evaluations of self-healing performance in cementitious materials with various
self-healing mechanisms through microcapsules and impregnation and encapsulation of lightweight
aggregates [14,15,30].

2.2. Surface-Wave Transmission

Most of the energy generated by surface impact is transmitted through Rayleigh surface waves
instead of body waves [52]. Although the attenuation of body waves, including longitudinal waves
(P-waves) and shear waves (S-waves), is proportional to the squared distance to impact sources,
the attenuation of surface waves is proportional to the square root of the distance to impact sources.
The inspection zone using a Rayleigh wave exceeds that of using body wave sources. A Rayleigh wave
is representatively known as a type of surface wave that propagates with elliptic motions combined
with horizontal and vertical components. The energy of vertical components of elliptic behaviors is
dependent on the height of the propagation waves and thus, the generation of surface waves across
a crack is sensitive to crack depth and wavelength. Figure 3 shows the transmission of surface waves
across a crack.
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Aldea et al. [26] presented the results of self-healing performance evaluation in normal-strength
concrete using stress wave transmission and water permeability test. Water permeability tests
conducted over 100 days induced continued hydration in the crack surface due to sufficient water
supply as well as calcite precipitation from calcium leaching and its reaction with carbonates from
water. Real cracks were generated from feedback-controlled splitting tests in 100 by 200 mm cylindrical
specimens. Stress waves were generated using solenoid-driven impact sources in a frequency range
of 0 to 60 kHz. Transmission of the signal was measured thrice: for uncracked specimens, after crack
generation, and after 100 days of water permeability tests. The authors concluded that a large initial
crack width resulted in a decrease in signal transmission. Additionally, reduction in permeability
coefficients was more significant than the recovery of elastic wave signal transmission that was
observed in the process of autogenous self-healing.

Aggelis and Shiotani [53] evaluated the effectiveness of crack repairing by epoxy through both
longitudinal and Rayleigh surface wave measurements. The transmission time decreased due to the
propagation of the waves across the region filled with epoxy. The change of amplitude and energy of
the Rayleigh wave across a partially closed crack could be an important factor for the crack depth.
The conventional stress wave techniques support the effectiveness of the Rayleigh wave-based
technique in investigating the effects of repair. In addition, Aggelis et al. [54] investigated the efficiency
of repair using Rayleigh wave measurements. Single artificial slots with a specific crack depth were
prepared at the center of specimen. Then, upper or all parts of the empty slots were filled with epoxy
to simulate fully or partially filled slots. Two types of transducers having center frequency with 50 kHz
and 115 kHz components were used to describe the effects of wavelength. The amplitude of Rayleigh
wave was a good indicator to evaluate the efficiency of repair.
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2.3. Diffuse Ultrasound

The characteristics (e.g., attenuation) of ultrasound propagation are generally dependent on
not only the frequency components of propagated waves but also the properties of materials.
Ultrasound propagates through concrete without displaying scattering effects at frequencies less
than 50 kHz and displaying scattering at frequencies exceeding 100 kHz [55]. Transmitted waves
recognize complex heterogeneous media as a solid media and are propagated when the generated
waves are dominated by low-frequency components corresponding to 50 kHz, such as the surface
waves introduced in Section 2.2. However, excitation of waves with high-frequency components over
100 kHz leads to reflection, refraction and mode conversion of waves due to a heterogeneous internal
composition among cement pastes, fine aggregate, and coarse aggregates in concrete. The diffusion
of an ultrasonic wave in concrete with coarse and fine aggregates and the resulting attenuation
of the ultrasound energy are illustrated in Figure 4. The typical one-dimensional diffusion with
dissipation and initial energy deposition terms are shown in Equation (1) [55]. The two-dimensional
diffusion phenomena of ultrasounds in concrete were also studied using surface probing transducers.
Aggelis and Philippidis [56] investigated the dispersion and attenuation of ultrasonic waves in
mortar, subsequently discovering the effects of frequency, water-to-cement ratio and fine aggregate on
dispersion characteristics.
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D
∂2〈E(z, t)〉

∂z2 − ∂〈E(z, t)〉
∂t

− σ〈E(z, t)〉 = E0δ(z)δ(t) (1)

where D and σ are the diffusion and dissipation coefficients with regard to frequency, E0 is the initial
energy, and 〈E(z, t)〉 is the measured spectral energy density at a specific time t and point z.

In et al. [27] monitored and evaluated the self-healing process in concrete using diffuse ultrasonic
parameters from two-dimensional diffusion models. Tensile and flexural cracked specimens were
controlled with a tolerance of less than 200 µm. Additionally, 457 mm by 127 mm by 127 mm beam
specimens from an unbonded post-tensioned bar were prepared. The damaged specimens were
immersed in NaCl solutions for a period of 120 days to describe self-healing processes in marine
structures. Two diffuse ultrasound parameters, namely arrival time of maximum energy (ATME)
and diffusivity, were measured to compare changes in crack width at the surface of concrete using
microscopy measurements. The self-healing process after crack generation decreased ATME and
increased diffusivity. The study results indicated that diffusivity is the most sensitive among diffuse
ultrasound parameters with respect to the prediction of the self-healing process. The relationship
between exposure time and diffusivity was derived using an exponential function. This exponential
relationship included measured diffusivity, asymptotic (maximum) diffusivity, initial damage, and
rate of self-healing as parameters.
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2.4. Coda Wave Interferometry (CWI)

A coda wave indicates reverberation components of randomly scattered waves due to scattering
effects in heterogeneous media (e.g., concrete). The length of the scattered wave travel path exceeds
that of the direct wave path and thus, the arrival time of scattering wave components (coda wave) is
after that of direct wave components (ballistic wave) [57]. As shown in Figure 5, no differences exist
between the three measured signals in the earlier parts. However, a small delay in the arrival signal
is measured in the later parts due to changes in stress conditions from acoustoelastic effects. At this
point, relative velocity change is calculated through delay time. Another parameter α is defined as
a stretching parameter and studied to analyze the coda wave signal. The reference signal condition and
range of analyzed time are determined to derive the stretching parameter α since its value maximizes
the correlation coefficients of CC(αi) in Equation (2).
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CC(αi) =

∫ t2
t1

u0[t(1− αi)]up[t]dt√∫ t2
t1

u02[t(1− αi)]dt
∫ t2

t1
up2[t]dt

. (2)

Here, t1 and t2 are the time ranges in the coda wave components, and up is the arrival signal.
The scattering characteristics of ultrasonic guided waves change with respect to internal media
conditions. Therefore, the effects of the internal media conditions can be investigated in more detail by
analyzing the coda wave signal. CWI is based on differences in signals between randomly scattered
wave components.

Liu et al. [28] conducted experiments to evaluate the self-healing of internal microcracks in bacteria
cementitious mortars using CWI and the recovery of compressive strength. Both bacteria-added
specimens and pure specimens were cured under the water and air exposure conditions over 50 days.
The determination of an appropriate window size and shifted signal influenced the results related to
velocity change in CWI techniques. The study results indicated that the signal was measured after
50 µs traveling internal space. The presence of bacteria agents did not affect the relative velocity in the
uncracked specimens, but the relative velocity changed to 4% in the neat-sprayed cracked specimens
and to 7% in the bacterial-sprayed cracked specimens due to self-healing. Hilloulin et al. [29] applied
a nonlinear ultrasound coda wave to monitor autogenous healing in cementitious materials with
image-based analysis techniques, based on their previous test results that CWI discriminated different
crack volumes with a very good sensitivity [59]. In the study, the stretching parameters were used to
monitor the self-healing state, with the changes in stretching parameters indicating the differences in
self-healing performance between mix proportions. Additionally, a stretching parameter was derived



Materials 2017, 10, 278 7 of 21

as the most sensitive parameter that could monitor the self-healing process among parameters from
diffusion ultrasound phenomena in concrete.

2.5. Acoustic Emission (AE)

The deformation or failure of solid media leads to the detection of generated sound (elastic wave)
through AE sensors (Figure 6). The generated sound is then evaluated through the point of nondestructive
tests and defined by AE testing. Specifically, AE testing can detect and predict failure of materials and
structures since it monitors and inspects the propagation of microcracks and small deformation in
materials prior to failure. Two types of AE signals are detected in AE sensors. First, a burst AE signal
is detected due to yielding, deformation, dissolution, solidification, cracking, and fracture failure of
materials. Second, a continuous AE signal is detected due to friction and leakage on the crack surface.
Generally, AE technique is used to detect leakage of gas in pipe and shell structures in the fields.
Additionally, the evaluation of corrosion in reinforced concrete structures is studied.
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In the previous studies, Granger et al. [39,40] monitored the autogenous healing of ultra-high
performance concrete through time-reversal techniques. The authors confirmed that there was
decreased energy and amplitude during the cracking process in addition to regained energy and
amplitude during the healing process. Additionally, AE is generally used to evaluate autonomous
crack healing using encapsulated healing agents [41–46]. AE tests are conducted with flexural tests and
combined with digital image correlation to identify crack generation and breakage of embedded capsules.
Van Tittelboom et al. [41] classified emission energy from acoustic sounds into different types ranging
from Class 1 to Class 7 and plotted the emission energy with respect to the load-displacement curve.
Tsangouri et al. [42] investigated autonomous crack healing mechanisms by encapsulated healing
agents in concrete under flexural damage. Crack generation was visualized through digital image
correlation (DIC) while the breakage of embedded macro-capsule was evaluated by acoustic emission
(AE) analysis. In this study, the damaged matrix and rupture of capsules was classified through AE
analysis. Karaiskos et al. [44] monitored the performance of autonomously healed large-scale concrete
beams in which the support span was 2800 mm. Van Tittelboom et al. [45] evaluated the survivability of
capsules during mixing and its breakability during crack generation with digital image correlation and
X-ray radiography to evaluate the efficiency of new encapsulation methods. The rupture of capsules to
release healing agents at the initiation of self-healing was detected with the point of rupture estimated
by using three-dimensional localization based on the arrival times at different sensors [46].
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3. Applicability and Limitation of Ultrasonic Methods

In previous studies, various self-healing assessment methods have been classified based on
objectives and characteristics [7–9]. Infrared thermography, radiography and measurements of
electrical resistance are also used to detect cracks, voids, delaminations and damage in concrete.
However, this section focuses on ultrasonic nondestructive tests using various assessment methods
due to both absence of existing research examining the evaluation of self-healing concrete using
other techniques.

In previous reviews, Van Tittelboom and De Belie [7] analyzed various assessment methods
to evaluate the regained mechanical and durability properties of self-healing concrete. Assessment
techniques were classified based on the following characteristics: visualization and determination,
tightness and mechanical properties. Tang et al. [8] summarized various evaluation methods to evaluate
self-healing efficiency in cementitious materials and suggested four independent criteria, namely
reliability, quality of results, operational consideration and in-situ applicability. Muhammad et al. [9]
classified the test methods as macro-scale (e.g., loading tests), micro-scale (e.g., scanning electron
microscope, X-ray powder diffraction) and nano-scale (e.g., evaluations of interfacial transition zones) tests.

In this study, for the discussion of applicability and limitations, in-situ applicability is adopted
as a criterion and four additional criteria are defined as follows: evaluation of the change in crack
size, evaluation of regained durability properties, evaluation of regained mechanical properties and
appropriate self-healing agents. First, self-healing was evaluated and verified through the most
intuitive criteria, namely microscopic observation to monitor changes in crack width at the surface.
Furthermore, the maximum self-healing performance of each self-healing agent was defined as the
ratio of the initial crack width at the surface to that of the fully closed crack. However, it was not
possible to measure a crack width in a specific location since crack width is not constant along a crack.
Therefore, the change in crack size could also be considered as crack depth. Second, the ultimate
goal to develop self-healing technology for concrete structures is to improve the durability properties.
It is not possible to apply current lab-scale durability evaluation methods, such as permeability
and chloride-ion diffusivity tests, on concrete structures in operation. Therefore, it is necessary to
suggest appropriate nondestructive techniques to evaluate durability properties in various fields.
Third, existing research focused on regained mechanical properties, although the efficiency of recovery
of mechanical properties is considerably lower than the performance of regained durability properties
and crack sizes. Fourth, various self-healing materials possess different mechanisms to seal cracks.
Therefore, it is necessary to consider different self-healing mechanisms, effectiveness of fit between
techniques, and self-healing agents. Fifth, the ultimate goal of studying nondestructive tests as
assessment techniques for self-healing concrete is to provide effective evaluations and maintenances
without any interruption in the structures. Finally, the limitation of each nondestructive technique for
evaluating self-healing concrete is discussed. In this classification, criteria are evaluated with respect
to four grades, studied in previous literature, must be able to apply, might be able to apply and might
not be able to apply.

3.1. Evaluation of Change in Crack Size

One of the most widely studied parameters for the evaluation of self-healing performance is crack
width, which is typically measured via microscopic observations. In recent years, image scanning-based
techniques have emerged as a potentially efficient approach for the measurement of surface crack width.
The estimated results of crack width by image scanning are quite similar to those by microscopic
measurements. Therefore, it may not be meaningful to develop another method for crack width
estimation using ultrasonic techniques. The present review focuses on the other crack size indices,
including crack depth, with the summarized results shown in Table 1.

The change in the global volume of cracks could be one of the most suitable indices for the
evaluation of self-healing performance. However, there are no reliable ultrasonic test methods capable
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of estimating the global crack volume to date. Therefore, discussions for the change in global crack
volume due to self-healing are excluded from the scope of this paper.

Table 1. Evaluation of change in crack size due to self-healing.

Test Methods UPV SWT AE DU CWI

Change in crack depth 1 # 2 4 3 # 4
1 indicates which assessment techniques are studied in previous literature; 2 # indicates which assessment
techniques are not studied in previous literature and must be able to apply; 3 4 indicates which assessment
techniques are not studied in previous literature and might be able to apply. UPV: ultrasonic pulse velocity;
SWT: surface-wave transmission; AE: acoustic emission; DU: diffuse ultrasound; CWI: coda wave interferometry.

First, the review focuses on the recovery of crack depth [14,15,30] using TOFD methods. In these
methods, crack depth is determined using the velocity of longitudinal waves that corresponds to the
fastest arrival signal, length between two transducers and transmission times. Figure 7 illustrates
the basic principle of crack depth estimation using ultrasonic transducers attached through indirect
methods. Crack depth d can be estimated through Equation (3) using the distance L between transducer
and crack. Furthermore, TOFD methods are used as nondestructive techniques to characterize cracks
in concrete structures prior to the application on self-healing concrete. However, the application of
TOFD methods on concrete structures to identify crack depth has several disadvantages in addition to
an unacceptable error range due to crack tips that are not clearly defined in concrete. Additionally, the
crack-filling process resulting from self-healing is assumed to be as follows. Crack is filled from the
crack tip to crack surface or the crack surface is closed first and the crack-filling material is filled from
the crack tip. Neither assumption considers the case of partially closed cracks (Figure 2). The fastest
arrival signals are passed through crack-filling materials when a crack is closed in the middle of the
specimen. It is then impossible to monitor the self-healing process occurring in the crack tip with
respect to the first filled materials at the middle since the change in transmission time is not shown.
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where ti indicates the measured time when the distance between transducer and crack is i.
Second, it is important to study surface-wave application to estimate the recovery of crack depth,

despite the lack of existing research on this topic. This is the result of crack-depth estimation methods
using surface-wave transmission having considerably more sensitive characteristics when compared
to pulse velocity. As mentioned in Section 2.2, waves are propagated along a surface within the
length of wavelength from the surface. Therefore, the transmission of surface waves depends on crack
depth. To estimate crack depth using the transmission of surface waves, Angel and Achenbach [60]
proposed theoretical solutions for the transmission and reflection of surface waves across a single
crack with regard to the normalized crack depth (crack depth divided by wavelength). Transmission
coefficients are applied to determine the crack depth in concrete [61–64]. Significant differences are
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not observed between transmission coefficients in artificial single cracks generated by notches and
real cracks generated by three-point bending tests [61]. Additionally, crack width does not affect the
transmission of surface waves [61]. Kee and Zhu [62] suggested that a normalized crack depth that is
smaller than 0.3 corresponds to a sensitive useful range for crack depth estimation based on normalized
transmission coefficients for different excitation frequencies. Meanwhile, Shin et al. [63] suggested
a spectral energy-based approach to estimate crack depths in concrete in order to neglect dependent
characteristics of transmission coefficients to frequency. In addition, the transmission of surface waves
across multiple distributed surface-breaking cracks was examined [64]. Additionally, when a crack
is partially closed from the external compressive forces, the self-healing process can be successfully
monitored using transmission coefficients since transmission coefficients are sensitively changed in the
process of crack closing when compared with the group velocity [65]. Therefore, the transmission of
surface waves can be successfully applied in both self-healing mechanisms, namely self-healing from
the crack tip and irregular self-healing at the middle of the crack depth.

Third, the crack depth may be estimated by locating the crack tip through the localization of AE
in which the distance to the crack tip from each sensor is determined using different arrival times at
multiple sensors as mentioned in Section 2.5. Therefore, AE analysis could correspond to one of the
most effective nondestructive techniques to confirm the change in crack depth due to self-healing,
as suggested by previous fracture mechanics studies [44]. However, AE analysis may need to be always
accompanied by destructive loadings and a consequent propagation of cracks. Therefore, it could be
difficult to evaluate the recovery of crack depth from healing materials without fracture processes.

Fourth, the evaluation of crack depth using diffusion phenomena of ultrasound in concrete is
examined, although the history of nondestructive techniques using diffuse ultrasound in concrete is
not intensively studied when compared with pulse velocity and surface-wave transmission [66–70].
The experimental results of artificial crack depth generated by notches are similar to the numerical
simulation results [66]. The diffusion of ultrasound in concrete with different types of artificial notches
like non-vertical cracks and two parallel cracks were investigated [67]. The ATME is suggested
as the best indicator to estimate crack depth created by notches [66–68]. However, an evaluation
parameter appropriate for real cracks is not suggested [68]. The effects of crack morphology on
the diffusion of ultrasound are discussed using numerical simulations [69]. Simultaneously, closed
cracks are simulated through the shaker, with the correlation between crack depth and changes in
the ATME then being examined [70]. The crack morphology significantly affects the diffusion of
ultrasound in concrete [68–70]. The performance evaluation on crack tip is successfully applied using
diffuse ultrasound when self-healing processes are sequentially initiated from the crack tip. However,
the efficiency of the diffuse ultrasound technique is considerably reduced due to conditions that
differ from the morphology of the internal crack surface when self-healing materials fill the crack at
the middle.

Finally, crack depth estimation using CWI is not intensively studied as compared to that using
pulse velocity, surface wave, and diffuse ultrasound. Therefore, the possibility of applying CWI
techniques to self-healing concrete should be carefully considered. The measured coda wave signal
scattered in concrete internal structures will change due to the self-healing process [28,29]. Additionally,
crack-filling materials shorten the lag time [29]. Simultaneously, crack detection in cementitious
materials using coda wave components was examined [59]. In this study, the estimated crack volume
exhibited a linear relationship with the coefficient α and the change in the relative velocity in case of
crack width within one hundred of microns [59]. The sensitive characteristics of CWI parameters to
the change in crack volume within small widths may emerge as a promising approach to evaluate
the performance of self-healing, since self-healing technologies are limited to small crack widths.
However, neither crack width nor depth has so far been suggested as an evaluation parameter sensitive
to the change of coda wave components. Therefore, further study would be valuable to evaluate the
crack depth using coda waves. It can be replaced via a comprehensive evaluation using crack volume
that combines the concepts of crack width and depth on self-healing concrete.
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3.2. Evaluation of Regained Durability Properties

The nondestructive evaluation of the durability properties of in-situ concrete structures was
rarely required until recent years, and thus few previous studies tried to investigate relationships
between the durability properties and NDT parameters. However, it is necessary to perform research
to evaluate the increase in durability regained in the process of self-healing with the development
of self-healing technologies. Most previous studies have evaluated regained durability properties
including water permeability [12,16,25,26,32], air permeability [47] and ion diffusivity tests [23,24,32].
Generally, nondestructive test methods support the results of durability tests for self-healing concrete in
different specimens with the same mix proportions and healing agents [16,23]. However, evaluations
of the regained durability properties and changes in nondestructive test parameters on the same
self-healing concrete specimen were not examined frequently [24,26].

In addition, research on the estimation of durability properties via ultrasonic nondestructive
test methods has only examined the correlation between gas permeability and pulse velocity.
First, the correlation model between ultrasonic parameters and gas permeability of cementitious
materials was investigated [71]. In their study, different water contents were used and the
water-to-cement ratio varied. Pulse velocity and ultrasonic attenuation were investigated as ultrasonic
parameters. A linear regression curve with higher regression coefficients between pulse velocity and
gas permeability was derived.

The regain in the durability properties due to self-healing may be evaluated by examining the
microstructural characteristics of concrete. Various ultrasonic techniques have been attempted to
characterize the microstructure of concrete [72–75]. These studies examined the relationship between
Rayleigh wave velocities and capillary porosities in cementitious materials with different water
contents [73]. Therefore, change in the linkages between the pores due to self-healing in concrete might
be able to be monitored through measurements of R-wave. Diffuse ultrasound and CWI are highly
promising techniques to predict durability properties of concrete because these techniques are based
on the scattering effects in concrete. The dissipation phenomena of diffuse ultrasound due to material
attenuation are dominated by a cement paste matrix as opposed to ITZ (interfacial transition zone) [74].
Furthermore, the amount of energy dissipation exhibits a linear relationship with frequency [75].
The prediction of air content through diffusivity was examined and revealed a good fit. Microcrack
damages from alkali–silica reactions and thermal damages were evaluated using a diffusivity index [76].
Additionally, the prediction of setting time in concrete using diffuse ultrasounds was examined [77].
Sensitivity characteristics between changes of material properties of concrete and the diffusion of
ultrasound were verified through previous studies.

However, as indicated in Table 2, it is difficult to apply AE analysis to monitor the changes in water
and air permeability and chloride-ion diffusivity because AE phenomena only occur when a structure
undergoes a fracture process. Additionally, there is an absence of previous studies investigating the
effects of the change in microstructure of cementitious materials on AE parameters.

Table 2. Evaluation of regain in durability properties due to self-healing.

Test Methods UPV 5 SWT AE DU CWI

Permeability # × 4 # #
Chloride ion diffusivity # # × # #

4 × indicates which assessment techniques are not studied in previous literature and might not be able to apply;
5 gas permeability instead of water permeability are studied in previous literature.

3.3. Evaluation of Changes in Mechanical Properties

A few studies have focused on the regained mechanical properties in the process of self-healing to
evaluate the performance of developing agents [11,13,17,18,21,22,25,28,30,33,34,39–46]. Among these,
damage and healing indices have been defined as mechanical property indices and their correlations
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have been analyzed [11,17,25,33,34]. Additionally, damage index and healing ratio have been defined
using the NDT parameter. The correlations between degree of damage and healing ratios using
compressive strength and UPV have been analyzed [33]. Meanwhile, several researchers have studied
the correlation between flexural strength and AE parameters [41], as indicated in Table 3.

Table 3. Evaluation of regain in mechanical properties due to self-healing.

Test Methods UPV 6 SWT 6 AE 7 DU 8 CWI 8

Strength 4 4 4 4
Stiffness # # 4 4

6 velocity-based estimations are studied in previous literature; 7 flexural strength and stiffness instead of
compression recovery are studied in previous literature; 8 4 basic research has not yet been performed to estimate
mechanical properties of concrete.

In general, concrete has unique characteristics that show a strong correlation between strength
and stiffness. Thus, many concrete design codes worldwide (e.g., Eurocode, ACI 318) specify
the relationship between the strength and stiffness of concrete. Accordingly, regain in concrete
strength in previous NDT studies was predicted using the estimation of the regain in stiffness.
However, the development of strength recovery due to self-healing was frequently found to be
relatively small, except for certain capsule-based self-healing [38,39]. Therefore, in this study,
the evaluation of the regain in mechanical properties focuses on the evaluation of regained stiffness.

Regained mechanical properties were evaluated using AE analysis with respect to flexural
strength, stiffness and AE parameters in self-healing concrete [39–46]. The results indicated that
the number of events and intensity of energy increased in the reloading states when the recovery of
flexural strength and stiffness increased. The following assumptions could be the prerequisites to
monitor the regained mechanical properties through nondestructive tests. When a crack is propagated
through retests after self-healing, it is necessary for the location of crack propagation to be generated
in the same direction from the initial tests. At this time, the coefficients of fracture tests and AE sounds
can be compared with the effects of self-healing.

The relationship between mechanical properties and pulse velocity was investigated. First, UPV is
the most widely used nondestructive technique to evaluate mechanical properties through
standard code. Generally, compressive strength is directly related to stiffness, which is related to
tightness. These relationships aided in deriving a strength prediction model using pulse velocity based
on the estimation of stiffness and tightness. An increase in the compressive strength at an early age
in the process of curing was monitored through R-wave velocities [78,79]. The elastic properties of
concrete were evaluated using surface waves with the results indicating a high degree of agreement
with those of previous empirical solutions [80]. Therefore, the wave velocity-based methods might be
appropriate to evaluation of regained mechanical properties.

In contrast, the application of regained mechanical properties in the process of self-healing as
well as the monitoring of the development of concrete strength using diffuse ultrasound phenomena
are not examined to date. A study could first monitor the development of compressive strength and
stiffness of concrete at an early age. This could be followed by applying diffuse ultrasound and CWI
to evaluate the regained mechanical properties in the process of self-healing.

3.4. Self-Healing Assessment for In Situ Structures

The evaluation indices, occurrence of crack damage, effects of environmental conditions and
standard criteria should be reviewed as shown in Table 4 to apply assessment techniques for in-situ
structures. The absence of standardized test methods can cause errors from different operational
conditions and the distortion of test results. Standard test methods are not established, except for
UPV measurements. Other assessment techniques rely on the software built in the equipment or
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analyzed through guidelines introduced in previous studies. This indicates that there are potential
improvements with respect to the analysis progress.

Table 4. Considerations for application of ultrasonic methods on in-situ structures for self-healing evaluation.

Test
Methods Evaluation Indices Need of Destructive

Loading
Effects of Environmental

Conditions
Standard
Criteria

UPV Transmission time
P-wave velocities × Major ASTM C597

SWT
R-wave velocities

Amplitude
Transmission coefficients

× Minor

None

AE AE energy
Counts of released energy # Major

DU

Diffusivity
ATME

Maximum energy
Dissipation

× Major

CWI Relative velocity change
Stretching parameters × Moderate

Several types of evaluation indices are used in each technique. In the case of UPV and CWI,
an evaluation index is dependent on the other evaluation indices (e.g., transmission time and P-wave
velocities). Therefore, only one measured index is used for evaluation of maintenance and inspection
of damage in concrete structures. In contrast, specific evaluation indices are independent on the
other parameters in surface-wave transmission, AE, and diffuse ultrasound. Therefore, in the case of
surface-wave transmission, AE and diffuse ultrasound, the most sensitive index is determined first to
establish standard test methods toward future practical application on the real structures.

The effect of various environmental conditions also constitutes an important issue in the
application of in-situ structures. Therefore, the authors classify the environmental effects into three
states: major, moderate and minor. The measurements of pulse velocity are dependent on the moisture
conditions and water content. The change in R-wave velocities is very low when compared to P-wave
velocities due to the change in moisture conditions. The current study concludes that the transmission
of surface wave corresponds to minor effects with respect to the environmental conditions. Conversely,
an analysis of the AE signals is dependent on environmental noises. Therefore, the determination of
threshold to neglect the environmental noise signals is an important factor. For example, in a lab-scale
evaluation, the sounds from the universal test machines are also measured in the software and should
be recognized as noises. The diffusion of ultrasound in concrete is also affected by the changes in
environmental conditions, such as the influence of temperature and coupling condition between
transducers to surface. However, the relative velocity change in ordinary temperature is lower than 1%.
Effects from the moisture conditions and water contents in concrete are not clearly investigated to date.

In summary, UPV and AE sounds were applied on in-situ structures to detect damage and they
have been tried to evaluate self-healing performance in large-scale concrete beam [44]. The possibility
of application in in-situ structures is summarized in Table 5.

Table 5. Application on in-situ structures for self-healing evaluation.

Test Methods UPV SWT AE DU CWI

In-situ structures # # #
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3.5. Applicability for Different Self-Healing Agents

The measurements of pulse velocity, transmission coefficients, diffusion parameters and
characteristics of coda wave can be applied in all types of self-healing agents. The nondestructive
evaluated performance through each self-healing agent is listed in Table 6. In this section,
applications of various self-healing agents are discussed from the viewpoint of self-healing agents and
nondestructive evaluation methods.

Table 6. Appropriate self-healing agents.

Recovery Mechanisms UPV SWT AE DU CWI

Natural Continued hydration

Engineered
Chemical agents # 4 # #

Bacteria # 4 #
Capsules # # #

First, UPV is applied to evaluate self-healing performance using autogenic self-healing, chemical
agents, bacteria, microcapsules, and macrocapsules [11,14–18,22,30,48]. In the aforementioned previous
studies, changes in transmission time or the other pulse velocity indices are reported due to all types of
self-healing agents. Therefore, it can be inferred that pulse velocity index experiences a slight change
when self-healing materials fill the internal crack surface.

Second, transmission coefficients are used to evaluate an autogenic self-healing process [26].
Although transmission coefficients were only used for the self-healing form continued hydration,
transmission coefficients can be applied to other types of self-healing agents. This is due to propagated
waves having the ability to recognize self-healing agents, such as chemical agents, bacteria and
microcapsules, as being part of concrete structures. Small scattering effects from the presence of
self-healing agents correspond to minor effects when compared with heterogeneous characteristics of
concrete due to coarse aggregates.

Diffuse ultrasound and CWI techniques are affected by the internal microstructure of concrete.
Therefore, measured signals can change from the process of crack filling using various self-healing
materials in identical concrete compositions. From this viewpoint, the development of comprehensive
evaluations on the performance of self-healing between various agents is desired. Although diffusion
and dissipation indices can experience slight changes due to the types and contents of self-healing
agents, it may be concluded that the effects of substituting self-healing agents such as bacteria are
negligible for some parts of cement pastes and aggregates, when compared with the effects of changes
in mix proportions.

Finally, AE analysis is not appropriate for general self-healing mechanisms due to the occurrence
of low slight acoustic signals from the crack-filling materials when compared to crack propagation.
AE-based evaluation for self-healing concrete is suitable for comparison studies in the process of
improving the performance of capsule-based self-healing element technology or the technologies that
can make recovery of mechanical properties.

3.6. Limitations

Finally, the limitations of each nondestructive technique for the evaluation on self-healing concrete
are discussed in Table 7. Measurements of pulse velocity are most frequently used as nondestructive
test methods to evaluate the characteristics of crack, durability properties, mechanical properties and
self-healing performance. Although UPV has an advantage with respect to convenience, there are some
limitations on its use in future practical applications. First, monitoring partially closed cracks due to
self-healing through UPV does not result in reliable evaluations. Second, velocity-based parameters are
significantly affected by environmental conditions. Additionally, the estimated strength and stiffness
are affected by tightness as well as moisture conditions. The effects of water content on the propagation
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velocity of ultrasonic pulse were investigated [81]. The target structure of self-healing concrete is
similar to that of a tunnel and a dam in which sufficient water is supplied due to water leakage. It is
not appropriate to apply the UPV method in the water-supplied conditions needed to realize the
self-healing process. However, some self-healing technologies, such as tubular or vascular capsule
systems, do not involve the use of water in the healing process. Therefore, the UPV method can be
utilized in such cases with no trouble.

Table 7. Limitations of ultrasonic wave methods for self-healing evaluation.

Test Methods UPV SWT AE DU CWI

Technical
points

Dependent on
environmental effects,
Partially closed crack

Minimum size
of specimen

Threshold,
Fracture process

Variability of
measured data

Determination of
analyzed data

Unknown
country - - - Evaluation of mechanical properties

When surface-wave transmission is used as a nondestructive evaluation method, assessment
is based on the characteristics of Rayleigh waves that transfer cracks with lengths lower than the
wavelength and reflect cracks that are longer than the wavelength. In order to evaluate crack properties
through surface-wave transmission, it is necessary for the specimen height to exceed the wavelength
of impact sources to recognize the specimen as a half-infinite solid media. Therefore, specimen size is
considerably large for lab-scale evaluations when the side and bottom reflections of propagated waves
are considered. Additionally, improved surface-wave transmission measurement techniques applying
non-contact air-coupled sensors were studied to avoid a coupling problem between the concrete
surface and contact accelerometers [64,65]. Currently, a free drop of a steel ball with various diameters
to change contact time and wavelength of waves is used to generate surface waves. Excitation methods
using transducers with power amplifiers were studied since previous surface-wave excitation using
a free drop of a steel ball involves a manualized method [82]. In the experiments using transducers,
it must be expected to retain the advantages of higher signal consistency in specific frequency regions.

As shown in Tables 1–6, the application fields of AE analysis are quite limited. The occurrence of
an AE event can detect the breakage of macrocapsules and locations of defects. However, other damage
conditions (e.g., degradation of durability properties) could not be estimated through AE analysis
with the exception of propagation cracks. The quality of experimental results from data processing
and analysis in acoustic AE signals is mostly dependent on the ability of proficient technicians.
Additionally, AE is not adequate with respect to structures subjected to noise pollution since the AE
signal is sensitive to changes in external conditions such as consistent noises. Similarly, a standard test
method is not established, and the measured signal is analyzed through built-in software supported by
each manufacturer. The AE analysis is appropriate in lab-scale performance evaluation of self-healing
concrete using capsules to locate the breakage of capsules. Therefore, AE can only be applied to selected
self-healing element technology using capsules. It might be hard to evaluate the self-healing capability
of bacteria or other chemical admixtures based on repaired concrete.

Currently, excitations through transducers with wide and high frequency ranges are typically
used to simulate the diffusion phenomena of ultrasound in concrete based on scattering effects between
matrices and aggregates. Concrete is a relatively heavy loss material from the viewpoint of attenuation
of waves among construction building materials. Thus, it is necessary to insert an amplified signal
into transducers to measure output signals with reasonable amplitude. Furthermore, there are several
diffusion parameters including dissipation, diffusivity and ATME. It is necessary to determine the
indices that are appropriate for evaluating different damage conditions and recovery of cracks, pores
or durability. In addition, variability of measured diffusivity is large, although diffusivity exhibits the
most ideal behavior to monitor internal changes and self-healing results.

CWI techniques are also based on diffusion phenomena. However, the variability of coda wave
parameters is considerably small when compared to diffusivity. Relative velocity change and stretching
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parameters are used as indices of CWI techniques. The analyzed time ranges differ across studies.
The differences from the analyzed time domain do not significantly affect the results of stretching
parameters. However, the standardization of the analyzed region is necessary to improve the reliability
of the test results.

4. Future Directions

The results of analysis of the applicability and limitation of nondestructive assessment techniques
have suggested that the development of correlation model between self-healing indices (e.g., crack size,
permeability) and nondestructive test parameters (e.g., pulse velocity, diffusivity) should be initially
examined, followed by performing a verification of the mock-up structures.

First, the evaluation of change in crack size focusing on crack depth is discussed in Section 3.1.
It is necessary for the crack recovery model to consider the change in crack depth. The present study
recommends the following steps to estimate a crack-depth recovery model. Surface-wave transmission
is first performed, followed by diffuse ultrasound. Finally, CWI is performed. The most sensitive
behavior across a crack can be monitored through the transmission of surface waves. Additionally,
the propagation of surface waves is less influenced by other factors, such as self-healing agents,
environmental conditions and mix proportions. The morphology of a crack surface directly affects the
diffusion of scattered waves. Therefore, supplementary evaluation methods including image-based
three-dimensional CT techniques are necessary to confirm the effects of morphology of crack surface
on diffuse ultrasound parameters. Previous studies on correlation between crack volume with smaller
crack width and coda wave parameters are also involved. In contrast, UPV is the most general, easy to
operate, and difficult to expect develop some special things in technical improvement points.

Second, existing research did not reflect the ultimate goal of developing self-healing concrete.
Previous studies that focused on self-healing element technologies involved a limited and concentrated
target performance of crack filling. It is not possible to expect that all material properties were
regained to levels prior to the occurrence of damage. Therefore, self-healing efficiency defined by
regained durability properties should be studied. In the previous studies, the water permeability in
concrete was significantly influenced by the initial crack width, roughness of crack, and microstructure
(e.g., pore condition). The roughness of crack surface may affect the self-healing process to form
crack-filling materials between water and cement paste [83]. In addition, the chloride-ion diffusivity
in concrete is likely affected by conditions of the internal crack surface as well as the microstructure.
However, previous research did not investigate the effects of pore structures in concrete on self-healing
performance. The present study recommends the following steps to evaluate a durability recovery.
First, the diffuse ultrasound is performed, before being followed by CWI. Although both these
techniques are sensitive to internal microstructural changes due to the scattering effects of propagated
waves, the diffuse ultrasound is recommended first due to the lack of evidence for CWI from
previous studies.

Third, nondestructive techniques using UPV and AE are the preferred technologies to evaluate
mechanical properties. The present study recommends that AE for flexural loads is first determined
before determining pulse velocity to evaluate the stiffness recovery. In contrast, there remains
uncertainty as to whether the other techniques (e.g., surface wave transmission, diffuse ultrasound,
CWI) might be used to evaluate mechanical properties. This is the result of a lack of existing research
examining the same in conjunction with a direct correlation between strength (or stiffness) development
and the nondestructive characteristics of each technique.

5. Conclusions

In this study, theories and case studies of five ultrasonic-based nondestructive test methods
(i.e., measurement of pulse velocity, surface-wave transmission, diffuse ultrasound, AE analysis,
and CWI techniques) were thoroughly examined with respect to their applicability and limitations in
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assessing the effectiveness and performance of the self-healing technologies developed for cementitious
materials. The findings and conclusions of this study can be summarized as follows:

(1) The measurement of UPV and its transmission time is one of the most developed ultrasonic
test methods and is widely used to evaluate the performance of the self-healing technologies.
However, the partial closing of cracks and moisture conditions in concrete structures can
affect the evaluation results of the self-healing performance by the UPV method. In addition,
the velocity-based approach is sensitive to moisture conditions.

(2) With respect to the other nondestructive test methods (e.g., surface-wave transmission, diffuse
ultrasound, AE analysis, and CWI), there are no standard test procedures to measure, process
and analyze the test data. Thus, it is necessary to determine appropriate self-healing evaluation
procedures for each test method by considering the target of self-healing performance evaluation
(e.g., crack size, permeability).

(3) The diffuse ultrasound and CWI methods are based on the scattering of elastic waves between
aggregates and matrices. Therefore, these techniques are suitable to assess the self-healing of
internal damages in concrete that are associated with durability properties.

(4) Nondestructive evaluations of mechanical properties (e.g., strength, stiffness) are studied through
measurements of either P-wave or R-wave velocity. Some researchers observed stiffness recovery
in the process of self-healing. However, the range of regained strength is quite small, which raises
the question as to whether it can be used as a measure for the performance of self-healing
technologies. Therefore, when evaluation methods for the regain of mechanical properties are
studied, it is proposed to focus on the stiffness using UPV or AE.

(5) All ultrasonic test methods with the exception of AE analysis can be applied for all types of
self-healing materials ranging from chemical agents to capsule-based mechanisms. In contrast,
the AE analysis can only be applied to regain mechanical properties from capsule-based
self-healing materials because the technique is based on sensing the sounds of capsule breakages.
Capsules are broken in the initial fracture test and the leakage of healing agents is assumed in the
detected locations.

Acknowledgments: This research was supported by a grant (No. 17SCIP-B103706-03) from the Construction
Technology Research Program funded by the Korean Ministry of Land, Infrastructure and Transport. The authors
would like to express sincere gratitude to Kwang-Myong Lee in Sungkyunkwan University (SKKU) and
Self-healing Green Concrete Research Center (SHGC) for his valuable support on this project.

Author Contributions: Eunjong Ahn conducted the review and analysis of the theoretical and experimental
contents of the references, and prepared the first full version of the manuscript; Hyunjun Kim participated in the
review and analysis of the references; Sung-Han Sim and Sung Woo Shin contributed to improving the manuscript
by technical guidance and comments; and Myoungsu Shin conceived the composition of this paper, supervised
the overall writing process, and was in charge of the revision of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Van Breugel, K. Is there a market for self-healing cement-based materials. In Proceedings of the
First International Conference on Self-Healing Materials, Noordwijk, The Netherlands, 18–20 April 2007.

2. De Rooij, M.R.; van Tittelboom, K.; de Belie, N.; Schlangen, E. Self-Healing Phenomena in Cement-Based Materials:
Draft of State-of-the-Art Report of RILEM Technical Committee; Springer: Dorchert, The Netherlands, 2011.

3. Wu, M.; Johannesson, B.; Geiker, M. A review: Self-healing in cementitious materials and engineered
cementitious composite as a self-healing material. Constr. Build. Mater. 2012, 28, 571–583. [CrossRef]

4. Mihashi, H.; Nishiwaki, T. Development of engineered self-healing and self-repairing concrete-state-of-
the-art report. J. Adv. Concr. Technol. 2012, 10, 170–184. [CrossRef]

5. Snoeck, D.; de Belie, N. From straw in bricks to modern use of microfibers in cementitious composites for
improved autogenous healing—A review. Constr. Build. Mater. 2015, 95, 774–787. [CrossRef]

http://dx.doi.org/10.1016/j.conbuildmat.2011.08.086
http://dx.doi.org/10.3151/jact.10.170
http://dx.doi.org/10.1016/j.conbuildmat.2015.07.018


Materials 2017, 10, 278 18 of 21
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