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At an individual level, cooperation can be seen as a behaviour that uses personal resource to support others or the groups which
one belongs to. In a conflict between two individuals, a selfish person gains an advantage over a cooperative opponent, while in a
group-group conflict the group with more cooperators wins. In this work, we develop a population model with continual conflicts
at various scales and show cooperation can be sustained even when interpersonal conflicts dominate, as long as the conflict size
follows a power law. The power law assumption has been met in several observations from real-world conflicts. Specifically if the
population is structured on a scale-free network, both the power law distribution of conflicts and the survival of cooperation can
be naturally induced without assuming a homogeneous population or frequent relocation of members. On the scale-free network,
even when most people become selfish from continual person-person conflicts, people on the hubs tend to remain unselfish and
play a role as “repositories” of cooperation.

1. Introduction

Understanding the survival of cooperation in the context
of Darwinian evolution has been a challenge to researchers
from various fields of natural and social sciences [1, 2].
During the past decades, a variety of mechanisms have been
proposed to explain how cooperation can be evolutionarily
advantageous under pressure of competitive selection. Typ-
ical examples include group selection [3–5], kin selection
[6, 7], direct/indirect reciprocity [8, 9], altruistic punishment
[1, 10, 11], other-regarding preferences [12–14], the social
heuristic hypothesis [15], and the interdependence hypothesis
[16].

At an individual level, cooperation can be seen as a
behaviour that uses personal resources to benefit other
individuals or a group at its own expense. When people
are engaged in a conflict, the effect of cooperation may
depend on the conflict scale. If a cooperator is engaged
with a defector in an interpersonal dispute, then he or she
is generally at disadvantage compared to the opponent as
selfish opponents can take a full advantage of their resources.

In case of a large conflict between groups, on the contrary,
the group with more cooperators is subject to win [17].
Thus frequent occurrence of group-level conflicts would
explain the survival of cooperation.However, since such large
conflicts overwhelming interpersonal disputes are relatively
rare in nature, there should be more elaborate explanation on
the relations between the evolution of cooperation and the
scale of interactions.

In order to solve this puzzle, there have been exten-
sive studies made in the framework of evolutionary game
theory. One of the leading paradigms is the spatial pris-
oner’s dilemma game [18, 19]. Social diversity and stochastic
variations in payoff in the spatial prisoner’s dilemma game
can promote cooperation greatly [20–22]. Various types of
heterogeneity also haven been introduced in the population
structure to affect the evolution of cooperation. In [23–25], it
is shown that cooperation becomes a dominating trait among
individuals if they interact following a scale-free network
or other complex networks of contacts. The public goods
game on the bipartite graphs has been studied as a model
of collective interactions among a structured population [26,
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Figure 1: Illustration of probability of occurrence of a conflict
involving 𝑥 persons and its consequence: conflicts are generated to
be consistent with a power law, and their consequences are classified
according to their size, where 𝑘𝑐 = 2.

27]. In particular, the cooperation thrives when themultilevel
public goods game is played in hierarchical groups. More
in-depth discussion and various examples can be found in
[28, 29].

In this work, we develop a conflict-based population
model that describes the evolution of cooperation. We
assume that cooperators and defectors interact at various
scales, and the size of those engagements follows a power
law distribution. A claim that distribution of conflicts often
resembles a power law has been raised from historical
observation on violent events [30–33]. The frequency of con-
flict occurrence, ranging from homicides through interstate
battles to international wars, is found to be inversely related
to their magnitude by means of a power law, as

𝑝cft (𝑥) ∼ 1𝑥𝛼 . (1)

Similar patterns fitted to a power law distribution were
also found in many different types of conflicts in domes-
tic/international politics and labor strikes. In those researches
on human conflict distributions, the exponent 𝛼 estimated
from the empirical datamostly ranges from 1.5 to 2.5 [30, 33–
38]. An example of power law conflict distributions is visual-
ized in Figure 1, by which selfish people win conflicts in most
cases. Suppose, for each conflict occurring according to a
power law distribution (1), the people engaged in the conflict
are randomly chosen from a population. Figure 2 shows a
conditional probability of an individual being engaged in a
large conflict when he or she happens to be chosen. As the
exponent 𝛼 increases, the tail of the distribution becomes
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Figure 2: Conditional probability of the conflict size being greater
than 2, given that an individual is engaged in a conflict.

thinner, making it harder for cooperators to survive through
small conflicts.

In the first part of our work, we show that cooper-
ation can be sustained even when individual-level con-
flicts dominate, as the size of conflicts follows a power
law distribution. However, like conventional mathematical
models in which group selection might work, this approach
further assumes the repeated isolation, mixture, and reiso-
lation of groups. Constant remixing is rather strong and
unrealistic requirement. This may be resolved by intro-
ducing a proper population structure such as a network
topology.

As mentioned above, the evolutionary game theory has
used various types of networks to represent social contact
structures and reported the eventual survival of cooperation
on such networks. In this study, we adopt the scale-free
networks as a platform for extensible groups which lead
to varying size conflicts and collective engagements. A link
between two nodes in thismodel represents potential alliance
against an opponent, rather than pairwise competition. Intro-
ducing network structures into conflict formation enables(1) a natural explanation why conflicts occur according to
a power law distribution and (2) flexible groupings while
individuals keep their fixed contact relations. To the author’s
knowledge, the mechanism behind a power law of conflicts
has never been studied in relation to human networks. In
addition, the scale-free networks we adopted in the paper
are not networks representing general contacts or conflicts,
but rather networks representing potential alliances. As a
result, the power law exponent for the conflict distribution
is different from that of the scale-free networks.

2. Conflicts at Various Scales

2.1. Model. Suppose there is a series of conflicts among 𝑁
persons who have either cooperative or selfish strategies.
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Each conflict engages two groups of randomly chosen per-
sons. In our first model, we assume that two groups are of
the same size 𝑘, 1 ≤ 𝑘 ≤ 𝑘max, and the size of a conflict𝑥 = 2𝑘 follows a power law distribution (1). The outcome
of a conflict depends on the number of cooperators in the
groups; if 𝑘 > 𝑘𝑐 for some 𝑘𝑐 ≥ 2, the group that has
more cooperators than the other is bound to win. This can
be justified as the unselfish people are willing to cooperate
and provide their resources for their group. However, if the
conflict is small or just an interpersonal dispute, 𝑘 < 𝑘𝑐, it is
assumed that the selfish-dominant group/person is subject to
win.

After each conflict, the persons may change their strate-
gies according to the result. The rule for strategy adaptation
is that those who are responsible for the group’s defeat change
their strategy with the adaptation rate 𝑟. In a group-group
conflict, the selfish persons in the defeated group change their
strategy to cooperation. On the contrary, a cooperator who
lost a small conflict of size 𝑘 < 𝑘𝑐 may turn selfish with the
probability 𝑟. In addition to this rule, we also assume that the
people randomly change their strategy with a small mutation
rate, 𝑞, between conflicts.

Figure 3 shows a sample simulation of the model con-
sisting of 𝑁 = 1,000 people. Initial distributions of cooper-
ative/selfish people are even. After 10,000 sequential conflicts
whose sizes follow the power law with 𝛼 = 3, the total
number of the cooperators reduces to around 250. Here, the
parameters 𝑘𝑐 = 2, 𝑘max = 500, 𝑟 = 1, and 𝑞 = 10−10 are
used.

2.2. Distribution of Cooperators in Equilibrium. Since our
model is a Markov chain, we first seek the corresponding
transition matrix 𝑊 ∈ 𝑅(𝑁+1)×(𝑁+1), where 𝑊𝑛,𝑚 is the
probability of moving from the state of 𝑚 cooperators to𝑛 cooperators in one-time step. One can see that 𝑊 is
decomposed as two transitional matrices 𝑃 and 𝑄 as

𝑊 = 𝑄𝑃. (2)

Here 𝑃 is the transition matrix for the change through a
conflict and 𝑄 is for the change by mutations. For simplicity,
we set the adaptation rate 𝑟 = 1. Then the matrix 𝑃 is
evaluated as

𝑃𝑛,𝑚 = 𝑃 (𝑛 | 𝑚) =
{{{{{{{{{{{{{{{{{{{{{{{

𝑘max∑
𝑘=𝑘𝑚,𝑛

𝑝cft (2𝑘) 𝑛−𝑚∑
𝑖=0

𝑝 (𝑚 − 𝑛 + 𝑘, 𝑚 − 𝑛 + 𝑖 + 𝑘 | 𝑚, 𝑘) if 𝑚 < 𝑛
𝑘alt−1∑
𝑘=1

𝑝cft (2𝑘)𝑚−𝑛−1∑
𝑖=0

𝑝 (𝑚 − 𝑛, 𝑖 | 𝑚, 𝑘) if 𝑚 > 𝑛
𝑘max∑
𝑘=1

𝑝cft (2𝑘)𝑚/2∑
𝑖=0

𝑝 (𝑖, 𝑖 | 𝑚, 𝑘) if 𝑚 = 𝑛,
(3)

where 𝑘𝑚,𝑛 = max(2, 𝑛 − 𝑚). Here, 𝑝(𝑚1, 𝑚2 | 𝑚, 𝑘) denotes
a probability that when the total number of cooperators is𝑚, two randomly chosen 𝑘-size groups have 𝑚1 and 𝑚2
cooperators, respectively. This can be obtained as

𝑝 (𝑚1, 𝑚2 | 𝑚, 𝑘)
= 2 ( 𝑚𝑚1 ) ( 𝑁−𝑚𝑘−𝑚1 ) (𝑚−𝑚1𝑚2 ) (𝑁−𝑚+𝑚1−𝑘

𝑘−𝑚2
)

(𝑁𝑘 ) (𝑁−𝑘
𝑘

) ,
if 𝑚1 ̸= 𝑚2.

(4)

In case of 𝑚1 = 𝑚2, it is the half of (4).

The transitionmatrix𝑄 for themutations is now found as

𝑄𝑛,𝑚 = 𝑄 (𝑛 | 𝑚) =
{{{{{{{{{{{{{

min(𝑚,𝑁−𝑛)∑
𝑖=0

(𝑚
𝑖 ) ( 𝑁 − 𝑚

𝑛 − 𝑚 + 𝑖) 𝑞𝑛−𝑚+2𝑖 (1 − 𝑞)𝑁+𝑚−𝑛−2𝑖 if 𝑚 < 𝑛
min(𝑛,𝑁−𝑚)∑
𝑖=0

(𝑁 − 𝑚
𝑖 ) ( 𝑚

𝑚 − 𝑛 + 𝑖) 𝑞𝑚−𝑛+2𝑖 (1 − 𝑞)𝑁−𝑚+𝑛−2𝑖 if 𝑚 ≥ 𝑛.
(5)

It is clear that 𝑊 is a positive Markov matrix, as any
two states 𝑚 and 𝑛 are directly connected with strictly

positive transition probability 𝑊𝑛,𝑚 > 0. The Perron-Frob-
enius theorem for a positive Markov matrix states that
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Figure 3: A single sample run of Monte Carlo simulation: the
number of cooperators is initially half of the 1,000 population and
soon decreases through a series of conflicts which is power law
distributed in size with 𝛼 = 3.
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Figure 4: Time evolution of the number of the cooperators: the
graph (in solid blue) is the ensemble average of 100,000 times of the
Monte Carlo realizations with 𝛼 = 3.The number of the cooperators
converges to the equilibrium (in solid red) which is analytically
evaluated in (6).

there exists a unique stationary probability distribution p
satisfying

p = 𝑊p, (6)

and moreover,

lim
𝑡→∞

𝑊𝑡 = [p | p | ⋅ ⋅ ⋅ | p] . (7)

The number of the cooperators in the equilibrium can be
obtained from analysis in (6) and (7). The mean is computed
from the equilibrium distribution p and compared to the
result from theMonte Carlo simulations in Figure 4. Here the
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Figure 5: The number of the cooperators in the equilibrium
according to the power law exponent 𝛼. The dotted line represents,
for a value of 𝛼 ranging from 1.5 to 4, how many cooperators out of
1,000 population remain in the end.The results are obtained from an
ensemble average of 100,000Monte Carlo realizations.The solid line
illustrates themean number of the cooperators when the population
is structured on a scale-free network. See Section 3.

same parameters, 𝑁 = 1,000, 𝛼 = 3, 𝑘𝑐 = 2, 𝑘max = 50, 𝑟 = 1,
and 𝑞 = 10−10, are used as in the setting for Figure 3.

The dotted graph in Figure 5 shows how the mean of
the number of the cooperators in the equilibrium changes
according to the exponent 𝛼. The phase transition occurs
at around 2.5 and the mean starts to drop to zero as 𝛼
approaches 3.5. This may be interpreted as a very favourable
signal for the cooperators, sincemost estimates for𝛼 based on
the empirical data of human conflicts range from 1.5 to 2.5.
However, referring to the graph in Figure 2, one can see that
if more than 70% of the disputes that each person undergoes
are interpersonal ones, the absolute number of people turns
to selfish.

3. Conflicts in Networked Population

3.1. Model. The earlier model is based on the homoge-
neous population without any fixed group structures. The
assumption based on constant mixing of the population
after each conflict is not quite realistic, especially for large-
scale disputes. In addition, the survival of cooperation in
the model essentially depends on the conditional probability
of an individual’s being engaged in a group-group conflict,
which is described in Figure 2. Thus cooperation in this
setting does not necessarily require power law distributed
conflicts, as long as large conflicts do not occur too scarcely.

In the second model, we introduce a network structure
to indicate people’s relations, keeping the same win-loss and
adaptation rule from the previous model. Each node of the
network represents an individual and the link connecting
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(a) Conflict between individuals (b) Conflict extended over a network

Figure 6: Formation of conflicts of various sizes over a network. A dispute initiated between two persons (illustrated in (a)) may develop into
a larger conflict (in (b)), following the networks.This escalation occurs with the probability 𝛽 and may repeat several times, creating conflicts
between two arbitrary clusters of various sizes.

two nodes represents their companionship which possibly
develops into alliance in a conflict. We assume that a group
is essentially an alliance to win a dispute and competitive
alliance formation is responsible for the group size distribu-
tion. Then it is important to see on what kind of structure
alliances grow. Here, as such structure, we suggest networks
that represent potential alliances between individuals. On
the networks, alliances are made between neighbors while
conflicts occur between relative strangers. Accordingly, we set
that every conflict initiates as a hostile event between persons
at two arbitrary nodes (which are generally not neighboring
each other).

The dispute could end up just as a interpersonal conflict
as in Figure 6(a), or, it may develop into a larger fight
and gets more people involved who are next to them as in
Figure 6(b). If such spreading occurs 𝑙 times, the eventual
size of the conflict will be sum of the two 𝑙th neighborhoods
of the original nodes. We set this conflict escalation rate as
the probability 𝛽. Note that two groups are not necessarily
the same size, which is more realistic when modeling large
group disputes. The assumption here is that two groups
experience the samemoments of enlarging over the networks
and therefore the group sizes are expected to agree only in the
mean. Also note that even the same person can belong to a
different group in a different conflict, depending on who is
engaged in the fight among his/her neighbors.

Modeling conflicts over a networked structured popula-
tion enables flexible groupings while individuals keep their
fixed contact relations. It has been empirically observed
that scale-free networks frequently occur in many complex
real-world systems, especially in social networks [39]. In
our model, the scale-free structure is adopted to repre-
sent collective engagements and flexible (but not random)
grouping among people. It provides a natural explanation
why the size of conflicts exhibits a power law distribution.
From the fact that the degree distribution of the scale-free
network is a power law, one can derive that conflicts extended
over such network in the above manner are bound to a
similar distribution. Indeed, they follow a power law with the
exponent

𝛼 ≈ − ln𝛽
ln 𝛾 , (8)
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Figure 7: Relation between the conflict escalation rate and the
power law exponent of the conflict size for a scale-free network.
Once the topology of the network is fixed, the conflict escalation
rate 𝛽 determines the distribution of the conflict size as in (8).

where 𝛾 is the mean number of the second next neighbors of
the nodes in the network. This relation is shown in Figure 7.

3.2. Survival of Cooperation over Scale-Free Networks. Once
we assign a fixed social structure into a populationmodel, the
situation usually turns against the cooperators, compared to
the homogeneously mixed population.

In the second model, we use scale-free networks with1,000 nodes each representing an individual. The links are
generated by the preferential attachment scheme, that is, the
standard procedure to create scale-free networks [40]. Since
the scale-free networks are characterized by the existence of
hubs, we are especially interested in how they behave in the
system. Are the hubs more cooperative or more selfish?

Figure 5 depicts the ensemble average of the number of
the cooperative people in the solid line.The same parameters
are used and the exponent 𝛼 is converted from the escalation
rate 𝛽 according to Figure 7. The graph is shifted to the
left from that of the well-mixed population, making it hard
for the cooperation to flourish. If interpersonal conflicts
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Figure 8: Time evolution of the mean ratio of the cooperators
according to the types of nodes. More than half of the people at
the hubs remain cooperative, while over two-thirds of the people at
nonhubs quickly turn selfish. The results are obtained from 100,000
times of Monte Carlo simulations with 𝛼 = 3.

become more than 50% of the conflicts that each individual
undergoes, then most of them choose to be selfish. However,
the graph holds the same qualitative behaviour and the
cooperation manages to be sustained for the exponent 𝛼
from 2 to 2.5, which is still in the range reported from
the many empirical researches [35–38]. Considering the
population has a fixed network structure, one can see that
the preservation of cooperation does not necessarily require
either constant reorganization of the groups or occasional
member exchanges between them, unlike the conventional
group selection theory.

It is notable that individuals at the hubs of the networks
play a key role in sustaining cooperation. Note that, since
the hubs have more links to other nodes, the persons
at the hubs are more likely to be engaged in large-scale
conflicts rather than 1-1 fights. Therefore they tend to keep
themselves cooperative even when most people elsewhere
fall to selfishness. Figure 8 compares the cooperators at the
hubs (the nodes with 10 or more links) to the cooperators
at other nodes. While the mean ratio of the cooperators at
normal nodes converges to around 25%, more than half of
the hubs remain unselfish.They resist a general tendency and
become sources of cooperation. In this regard, our common
sense about the relation between altruistic cooperation and
popularity, “good people make hubs,” is indeed true and the
other way around; hubs make people good.

4. Conclusion

Since the cooperators use their resources to help their group
win, they are put at a disadvantage in a man-to-man fight.
However, even when such interpersonal disputes dominate,
the cooperators can survive or even flourish, as the size

distribution of conflicts follow a power law distribution. One
can derive the convergent equilibrium distribution of the
cooperative people in the well-mixed population.

The conventional cooperation model based on the naive
group selection has been criticised in that it requires fre-
quent mixing between the groups and excludes long lasting
social structures. In this work, we assume that people’s
companionship is structured as scale-free networks and their
conflicts can develop into a larger conflict, propagating over
the networks. This leads to a natural explanation of why
human conflicts exhibit a power law distribution and how
cooperation successfully continues to exist. The population
with a fixed structure is less favourable to the cooperators
than the homogeneouslymixed population.This is seemingly
contradictory to classical game-theoretical models where
the scale-free structure promotes cooperation [18, 19, 25].
However, our model is different in that the nodes in the
neighbor are not competitors to play with but rather potential
allies to cope with external disputes. One can see that
cooperation still survives as long as the corresponding power
law exponent is in the suitable range.

Since the scale-free networks are characterized by the
existence of hubs, we are interested in their behaviour in the
system. It is important that the individuals at the hubs get
involved in large conflicts more frequently and therefore tend
to remain unselfish. The observation that the hubs become
sources of cooperation may give meaningful implication on
the role of the hubs in the social networks.
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