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Abstract

Increasing the imaging speed is a central aim in photoacoustic tomography. This issue is
especially important in the case of sequential scanning approaches as applied for most existing
optical detection schemes. In this work we address this issue using techniques of compressed
sensing. We demonstrate, that the number of measurements can significantly be reduced by
allowing general linear measurements instead of point-wise pressure values. A main requirement
in compressed sensing is the sparsity of the unknowns to be recovered. For that purpose, we
develop the concept of sparsifying temporal transforms for three-dimensional photoacoustic
tomography. We establish a two-stage algorithm that recovers the complete pressure signals in a
first step and then apply a standard reconstruction algorithm such as back-projection. This yields
a novel reconstruction method with much lower complexity than existing compressed sensing
approaches for photoacoustic tomography. Reconstruction results for simulated and for
experimental data verify that the proposed compressed sensing scheme allows for reducing the
number of spatial measurements without reducing the spatial resolution.

Keywords: non-contact photoacoustic imaging, photoacoustic tomography, compressed sensing,
sparsity

(Some figures may appear in colour only in the online journal)

1. Introduction

Photoacoustic tomography (PAT), also known as optoa-
coustic tomography, is a novel non-invasive imaging tech-
nology that beneficially combines the high contrast of pure
optical imaging with the high spatial resolution of pure
ultrasound imaging (see [1-3]). The basic principle of PAT is
as follows (compare figure 1). A semitransparent sample
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(such as a part of a human patient) is illuminated with short
pulses of optical radiation. A fraction of the optical energy is
absorbed inside the sample which causes thermal heating,
expansion, and a subsequent acoustic pressure wave
depending on the interior absorbing structure of the sample.
The acoustic pressure is measured outside of the sample and
used to reconstruct an image of the interior.

1.1. Classical measurement approaches

The standard approach in PAT is to measure the acoustic
pressure with small detector elements distributed on a surface
outside of the sample; see figure 1. The spatial sampling step

© 2016 IOP Publishing Ltd  Printed in the UK
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Figure 1. Basic setup of PAT. An object is illuminated with a short
optical pulse that induces an acoustic pressure wave. The pressure
wave is measured on discrete locations on a surface and used to
reconstruct an image of the interior absorbing structure. The small
spheres indicate the possible detector or sensor locations on a regular
grid on the measurement surface.

size limits the spatial resolution of the pressure data and the
(lateral) resolution of the final reconstruction’. Consequently,
high spatial resolution requires a large number of detector
locations. Ideally, for high frame rate, the pressure data are
measured in parallel with a large array made of small detector
elements. However, the signal-to-noise ratio and therefore the
sensitivity decreases for smaller detector elements and pro-
ducing a large array with high bandwidth is costly and
technically demanding.

As an alternative to the usually employed piezoelectric
transducers, optical detection schemes have been used to
acquire the pressure data [4—7]. In these methods an optical
beam is raster scanned along a surface. In case of non-contact
photoacoustic imaging schemes the ultrasonic waves
impinging on the sample surface change the phase of the
reflected light, which is demodulated by interferometric
means and a photodetector [5—7]. For Fabry—Perot film sen-
sors, acoustically induced changes of the optical thickness of
the sensor lead to a change in the reflectivity, which can be
measured using a photo diode [4]. Equally for both techni-
ques, the ultrasonic data are acquired at the location of the
interrogation beam by recording the time-varying output of
the photodetector. In order to collect sufficient data the
measurement process has to be repeated with changed loca-
tions of the interrogation beam. Obviously, such an approach
slows down the imaging speed. The imaging speed can be
increased by multiplying the number of interrogation beams.
For example, for a planar Fabry—Perot sensor a detection
scheme using eight interrogation beams has been demon-
strated in [8].

Another, less straight forward, approach to increase the
measurement speed is the use of patterned interrogation
together with compressed sensing techniques. Patterned
interrogation was experimentally demonstrated using a digital
micromirror device (DMD) in [9, 10]. Using digital micro-
mirror devices or spatial light modulators to generate such

5 Note that there are several other important factors limiting the resolution of
PAT, such as finite detector size, limited detection bandwidth, a limited
acoustic aperture, or acoustic attenuation.

interrogation patterns together with compressed sensing
techniques allows to reduce the number of spatial measure-
ments without significantly increasing the production costs.
For such approaches, we develop a compressed sensing
scheme based on sparsifying temporal transforms originally
introduced for PAT with integrating line detectors in [11, 12].

1.2. Compressed sensing

Compressed sensing (or compressive sampling) is a new
sensing paradigm introduced in [13—15]. It allows to capture
high resolution signals using much less measurements than
advised by Shannon’s sampling theory. The basic idea in
compressed sensing is replacing point measurements by
general linear measurements, where each measurement con-
sists of a linear combination

yljl =Y Alj. iIx[il forj=1 ...m. (1)
i=1

Here, x is the desired high resolution signal (or image), y the
measurement vector, and A is the m X n measurement
matrix. If m < n, then (1) is a severely under-determinated
system of linear equations for the unknown signal. The theory
of compressed sensing predicts that under suitable assump-
tions the unknown signal can nevertheless be stably recovered
from such data. The crucial ingredients of compressed sensing
are sparsity and randomness.

(1) Sparsity: This refers to the requirement that the
unknown signal is sparse, in the sense that it has only
a small number of entries that are significantly different
from zero (possibly after a change of basis).

(i) Randomness: This refers to selecting the entries of the
measurement matrix in a certain random fashion. This
guarantees that the measurement data are able to
sufficiently separate sparse vectors.

In this work we use randomness and sparsity to develop
novel compressed sensing techniques for PAT.

1.3. Compressed sensing in PAT

In PAT, temporal samples can easily be collected at a high
rate compared to spatial sampling, where each sample
requires a separate sensor. It is therefore natural to work with
semi-discrete data p (rs[i], - ), where rg[i] denote locations
on the detection surface. Compressed sensing measurements
in PAT take the form (1) with x[i] := p (rg[i], ) for fixed time
t. See figure 2 for an illustration of classical point-wise
sampling versus compressed sensing measurements. In PAT
it is most simple to use binary combinations of pressure
values, where A[j, i] only takes two values (states on and
off). Binary measurements can be implemented by optical
detection using patterned interrogation and we restrict our-
selves to such a situation.

In the PAT literature, two types of binary matrices
allowing compressed sensing have been proposed (see
figure 3). In [9, 10] scrambled Hadamard matrices have been
used and experimentally realized. In [11, 12] expander
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Figure 2. Standard sampling versus compressed sensing. Left:
standard sampling records point-wise data at individual detector
positions. Right: compressed sensing measurements consist of
random combinations of point-wise data values.

Figure 3. Binary random matrices allowing compressed sensing.
Left: Bernoulli matrix is dense and unstructured. Center: Sub-
sampled Hadamard matrix is dense and structured. Right: expander
matrix is sparse and unstructured. See the appendix for more details
on how to construct these matrices.

matrices have been used, where the measurement matrix is
sparse and has exactly d non-vanishing elements in each
column, whose locations are randomly selected. Another
possible choice would be a Bernoulli matrix where any entry
is selected randomly from two values with equal probability.
In all three cases, the random nature of the selected coeffi-
cients yields compressed sensing capability of the measure-
ment matrix (see appendix for details). As in [11, 12], in this
study we use expander matrices. For the experimental ver-
ification such measurements are implemented virtually by
taking full point-measurements in the experiment and then
computing compressed sensing data numerically. This can be
seen as proof of principle; implementing pattern interrogation
in our contact-free photoacoustic imaging device is an
important future aspect.

Besides the random nature of the measurement matrix,
sparsity of the signal to be recovered is the second main
ingredient enabling compressed sensing. As in many other
applications, sparsity often does not hold in the original
domain. Instead sparsity holds in a particular orthonormal
basis, such as a wavelet or curvelet basis [16, 17]. However,
such a change of basis can destroy the compressed sensing
capability of the measurement matrix (for example, in the
case of expander matrices). In order to overcome this lim-
itation, in [11, 12] we developed the concept of a sparsifying
temporal transformation. Such a transform applies in the
temporal variable only and results in a filtered pressure signal
that is sparse. Because any operation acting in the temporal
domain intertwines with the measurement matrix, one can
apply sparse recovery to estimate the sparsified pressure. The
photoacoustic source can be recovered, in a second step, by
applying a standard reconstruction algorithm to the sparsified
pressure.

1.4. Outline of this paper

In this paper we develop a compressed sensing scheme based
on a sparsifying transform for three-dimensional PAT (see
section 2). This complements our work [11, 12], where we
introduced the concept of sparsifying transforms for PAT
with integrating line detectors. Wave propagation is sig-
nificantly different in two and three spatial dimensions. As a
result, the sparsifying transform proposed in this work sig-
nificantly differs from the one presented in [11, 12]. In the
appendix, we provide an introduction to compressed sensing
serving as a guideline for designing compressed sensing
matrices and highlighting the role of sparsity. In section 3 we
present numerical results on simulated as well as on exper-
imental data from a non-contact photoacoustic imaging setup
[18]. These results indicate that the number of spatial mea-
surements can be reduced by at least a factor of 4 compared to
the classical point sampling approach. The paper concludes
with a discussion presented in section 4 and a short summary
in section 5.

2. Compressed sensing for PAT in planar geometry

In this section we develop a compressed sensing scheme for
PAT, where the acoustic signals are recorded on a planar
measurement surface. The planar geometry is of particular
interest since it is the naturally occurring geometry if using
optical detection schemes like the Fabry—Perot sensor or non-
contact imaging schemes. We thereby extend the concept of
sparsifying temporal transforms introduced for two-dimen-
sional wave propagation in [11, 12]. We emphasize that the
proposed sparsifying transform for the three-dimensional
wave equation can be used for any detection geometry. An
extension of our approach to general geometry would, how-
ever, complicate the notation.

2.1. PAT in planar geometry

Suppose the photoacoustic source distribution p,, (r) is located
in the upper half space { (x, y, z) € R}| z > 0}. The induced
acoustic pressure p(r, t) satisfies the wave equation

1 0%p(r, 1)

2 0
where A, denotes the spatial Laplacian, 9/9t is the derivative
with respect to time, ¢ the sound velocity, and 6 (¢) the Dirac
delta-function. Here (06/0t)p, acts as the sound source at
time ¢ = 0 and it is supposed that p(r, r) = 0 for r < 0. We
further denote by

Awp(r, 1) = —%(r) p®. @

(Wpo)(xs, yS7 t) = p(xS’ ySs 07 t)7

the pressure data restricted to the measurement plane. PAT in
planar recording geometry is concerned with reconstructing
the initial pressure distribution p, from measurements
of Wp,.

For recovering p, from continuous data explicit and
stable inversion formulas, either in the Fourier domain or in
the time domain, are well known. A particularly useful
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inversion method is the universal backprojection (UBP),
z RPN
po® == [ 10 Wpg) s, ys. Ir — xshdS. 3)

Here, r = (x, y, z) is a reconstruction point, ry = (xs, yg, 0)
is a point on the detector surface, and |r — rg| is the distance
between r and rg. The UBP has been derived in [19] for
planar, spherical and cylindrical geometries. The two-
dimensional version of the UBP

_ _% o (&lePo)(xS’ )
p()(r) N s j;f|r—rg|

12— |r — rgf?
where r = (x, z) and rg = (x5, 0) has been first obtained in
[20]. In recent years, the UBP has been generalized to ellip-
tical observation surface in two and three spatial dimensions
[21, 22], and various geometries in arbitrary dimension (see
[23-25]).

drdsS,

2.2. Standard sampling approach

In practical applications, only a discrete number of spatial
measurements can be made. The standard sensing approach in
PAT is to distribute detector locations uniformly on a part of
the observation surface. Such data can be modeled by

pli, - 1:=0Wpy) (xslil, yslil, -) fori=1,...,n. (4)

The UBP algorithm applied to semi-discrete data (4) consists
in discretizing the spatial integral in (3) using a discrete sum
over all detector locations and evaluating it for a discrete
number of reconstruction points. This yields to the following
UBP reconstruction algorithm.

Algorithm 1. (UBP algorithm for PAT).

Goal: Recover the source p, in (2) from data (4).

(S1) Filtration: for any i, t compute
qli, 1] — 9710, pli, 11.
(S2) Backprojection: for any k set
Polk] — vIkl/m32 qli, Ir[k] — xslil[lw;.

In algorithm 1, the first step (S1) can be interpreted as
temporal filtering operation. The second step (S2) discretizes
the spatial integral in (3) and is called discrete backprojection.
The numbers w; are weights for the numerical integration and
account for the density of the detector elements.

2.3. Compressed sensing approach

Instead of using point-wise samples, the proposed com-
pressed sensing approach uses linear combinations of pres-
sure values

n
ylj. -1=>Alj, ilpli, -1 forje{l ...m}, (5

i=1
where A is a binary m X n random matrix, and p[i, ¢] are
point-wise pressure data. In the case of compressed sensing
we have m < n, which means that the number of measure-
ments is much smaller than the number of point-samples. As

shown in the appendix, Bernoulli matrices, subsampled
Hadamard matrices as well as expander matrices are possible
compressed sensing matrices.

In order to recover the photoacoustic source from the
compressed sensing data (5), one can use the following two-
stage procedure. In the first step we recover the point-wise
pressure values from the compressed sensing measurements.
In the second step, one applies a standard reconstruction
procedure (such as the UBP algorithm 1) to the estimated
point-wise pressure to obtain the photoacoustic source. The
first step can be implemented by setting p[-, ¢] := PX[., t],
where X[, t] minimizes the ¢!-Tikhonov functional

1 N . .
EIIY[-, 11 — ATK|P + A|I%][; — min. (6)

Here, ¥ € R"*" is a suitable basis (such as orthonormal
wavelets) that sparsely represents the pressure data and A is a
regularization parameter. Note that (6) can be solved sepa-
rately for every r € [0, T] which makes the two-stage
approach particularly efficient. The resulting two-stage
reconstruction scheme is summarized in algorithm 2.

Algorithm 2. (Two-stage compressed sensing reconstruction
scheme).

Goal: Recover p, from data (5).

(S1) Recovery of point-measurements:

4 Choose a sparsifying basis ¥ € R**",

4 For every t, find an approximation p[-, ¢] := PX[-, t] by mini-
mizing (6).

(S2) Recover p, by applying a PAT standard reconstruction algo-
rithm to p[-, ¢].

As an alternative to the proposed two-stage procedure,
the photoacoustic source could be recovered directly from
data (5) based on minimizing the ¢!-Tikhonov regularization
functional [26, 27]

1 R R .
Slly =@ WBol3 + AI®poll; — min. (7
Do

Here, W is a suitable basis that sparsifies the photoacoustic
source p,. However, such an approach is numerically
expensive since the three-dimensional wave equation and its
adjoint have to be solved repeatedly. The proposed two-step
reconstruction scheme is much faster because it avoids eval-
uating the wave equation, and the iterative reconstruction
decouples into lower-dimensional problems for every t. A
simple estimation of the number of floating point operations
(flops) reveals the dramatic speed improvement. Suppose we
have n = N x N detector locations, O(N) time instances and
recover the source on an N X N x N spatial grid. Evaluation
of a straight forward time domain discretization of V¥ and its
adjoint require O(N”) flops. Hence, the iterative one-step
reconstruction requires Nj, O(N>) operations, where Ny, is
the number of iterations. On the other hand, the two-stage
reconstruction requires N, O(N3m) flops for the iterative
data completion and additionally O(N?) flops for the sub-
sequent UBP reconstruction. In the implementation, one takes
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the number of iterations (at least) in the order of N and
therefore the two-step procedure is faster by at least one order
of magnitude.

Compressed sensing schemes without using random
measurements have been considered in [28-30]. In these
approaches an optimization problem of the form (7) is solved,
where A is an under-sampled measurement matrix. Especially
when combined with a total variation penalty such approaches
yields visually appealing result. Strictly taken, the measure-
ments used there are not shown to yield compressed sensing,
which would require some form of incoherence between the
measurement matrix and the sparsifying basis (usually
established by randomness). For which class of phantoms
undersampled point-wise measurements have compressed
sensing capability for PAT is currently an unsolved problem.

2.4. Sparsifying temporal transform

In order for the pressure data to be recovered by (6), one
requires a suitable basis ¥ € R"*" such that the pressure is
sparsely represented in this basis and that the composition
A o W is a proper compressed sensing matrix. For expander
matrices, these two conditions are not compatible. To over-
come this obstacle in [11, 12] we developed the concept of a
sparsifying temporal transform for the two-dimensional case
in circular geometry. Below we extend this concept to three
spatial dimensions using combinations of point-wise pressure
values.

Suppose we apply a transformation T to the data
t — y[-, t] that only acts in the temporal variable. Because the
measurement matrix A is applied in the spatial variable, the
transformation T and the measurement matrix commute,
which yields

Ty = A(Tp). (8)

We call T a sparsifying temporal transform, if Tp[-, 1] € R”
is sufficiently sparse for a suitable class of source distributions
and all times ¢. In this work we propose the following spar-
sifying spatial transform

T(p) := £30,t710,t'p. 9)

The sparsifying effect of this transform is illustrated in
figure 4 applied to the pressure data arising from a uniform
spherical source. The reason for choice of (9) is as follows: It
is well known that the pressure signals induced by a uniform
absorbing sphere has an N-shaped profile. Therefore, apply-
ing the second temporal derivative to p yields a signal that is
sparse. The modification of the second derivative is used
because the term O,t~'p appears in the universal back-
projection and therefore only one numerical integration is
required in the implementation of our approach. Finally, we
empirically found that the leading factor £ results in well
balanced peaks in figure 4 and yields good numerical results.

Having a sparsifying temporal transform at hand, we can
construct the photoacoustic source by the following modified
two-stage approach. In the first step recover an approximation

60
40
20

0

-0.5 0 0.5 1 1.5

Figure 4. Effect of the sparsifying transform. Top: cross section of a
uniform spherical source. Middle: corresponding pressure data.
Bottom: result after applying the sparsifying transform T.

q[-, t] =~ Tp[:, t] by solving

1 N ~ .

EIIT)’[', 1 — AQl, 1P + Alal Al — min.— (10)
q

In the second step, we recover the photoacoustic source by

implementing the UBP expressed in terms of the sparsified

pressure,

__Zz 3
@ === [ [ @D Gy s, (D)

Here, r = (x,y,z) 1is a reconstruction point and
rs = (x5, Y5, 0) a point on the measurement surface. The
modified UBP formula (11) can be implemented analogously
to algorithm 1. In summary, we obtain the following recon-
struction algorithm.

Algorithm 3. (Compressed sensing reconstruction with
sparsifying temporal transform).

Goal: Reconstruct p, in (2) from data (5).

(S1) Recover sparsified point-measurements:
4 Compute the filtered data Ty (r)

4 Recover an approximation [-, 7]

to Tp[-, ¢] by solving (10).

(S2) UBP algorithm for sparsified data:

4 For any i, p set

ali, pl — [ +7q[i, 1] dt

4 For any k/ set

py STk — MO gl Jelk] - (i) llw.

T

Since (10) can be solved separately for every ¢, the
modified two-stage algorithm 3 is again much faster than a
direct approach based on (7). Moreover, from general
recovery results in compressed sensing presented in the
appendix, algorithm 3 yields theoretical recovery guarantees
for Bernoulli, subsampled Hadamard matrices as well as
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Figure 5. Three-dimensional compressed sensing PAT versus
standard approach. (a) Cross section of superposition of two uniform
spherical absorbers. (b) Reconstruction using 4096 point measure-
ments on a Cartesian grid. (c) Compressed sensing reconstruction
using 1024 measurements with d = 15. (d) Reconstruction using
1024 point measurements on a Cartesian grid.

expander matrices (adjacency matrices of left d-regular
graphs); see figure 3.

3. Numerical and experimental results

3.1. Results for simulated data

We consider reconstructing a superposition of two spherical
absorbers, having centers in the vertical plane
{(x,y,z) € Ry =0)}. The vertical cross section of the
photoacoustic source is shown in figure 5(a). In order to test
our compressed sensing approach we first create point sam-
ples of the pressure JWp, on an equidistant Cartesian grid on
the square [—3, 3] x [—3, 3] using 64 x 64 grid points.
From that we compute compressed sensing data

4096

ylj, 11 = SCALj, ilpli, 1] forj € {1, ...,1024}.
i=1

12)

The choice m = 1024 corresponds to an reduction of mea-
surements by a factor 4. The expander matrix A was chosen
as the adjacency matrix of a randomly left d-regular
graph with d = 15; see example 10 in the appendix. The
pressure signals p[i, t] have been computed by the explicit
formula for the pressure of a uniformly absorbing sphere [31]
and evaluated at 243 times points ¢t uniformly distributed in
the interval [0, 6].

Figure 5 shows the reconstruction results using 4096
point samples using algorithm 1 (figure 5(b)) and the recon-
struction from 1024 compressed sensing measurements using
algorithm 3 (figure 5(c)). The reconstruction has been com-
puted at 241 x 41 grid points in a vertical slice of size
[—3, 3] x [0, 1]. The ¢'-minimization problem (10) has been
solved using the FISTA [32]. For that purpose the matrix A
has been rescaled to have 2-norm equal to one. The

Table 1. Normalized /“-reconstruction errors for o = 1, 2.

4096 standard 1024 standard 1024 CS
a=1 0.0472 0.0660 0.0409
a=2 0.1046 0.1256 0.1124

Figure 6. Result of sparse recovery. (a) Pressure at z = 0 induced by
two spherical absorbers shown in figure 5. (b) Result after applying
the sparsifying transform. (c) Reconstruction of the sparsified
pressure from compressed sensing measurements using ¢!
minimization.

regularization parameter has then been set to A = 10~ and
we applied 7500 iterations of the FISTA with maximal step
size equal to one. We see that the image quality from the
compressed sensing reconstruction is comparable to the
reconstruction from full data using only a fourth of the
number of measurements. For comparison purposes,
figure 5(d) also shows the reconstruction using 1024 point
samples. One clearly recognizes the increase of under-
sampling artifacts and worse image quality compared to the
compressed sensing reconstruction using the same number of
measurements. A more precise error evaluation is given in
table 1, where we show the normalized ¢“-error
‘{/Z;Jpo [i] — pOCS [7] |°‘/n for « = 1 and o = 2. The recon-
struction error in ¢!-norm is even slightly smaller for the
compressed sensing reconstruction than for the full recon-
struction. This might be due to a slight denoising effect of
{'-minimization that removes some small amplitude errors
(contributing more to the ¢'-norm than to the ¢?-norm).
Figure 6 shows the pressure corresponding to the absorbers
shown in figure 5 together with the sparsified pressure and its
reconstruction from compressed sensing data.

Finally, figure 7 shows the reconstruction (restricted to
[—1, 1] x [0, 1]) using algorithm 3 for varying compression
factors n/m =16,8,4,2,1. In all cases d =15 and
A = 107 have been used and 7500 iterations of the FISTA
have been applied. As expected, the reconstruction error
increases with increasing compression factor. One further
observes that the compression factor of 4 seems a good choice
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(f) n/m (compression factor) 03

0.2
N 0.1

16 8 4 2 1

Figure 7. Recovery results for varying compression factorn/m. (a)
n/m=16. (b) n/m = 8. (c) n/m = 4. (d) n/m = 2. () n/m = 1.
(f) Normalized £2-reconstruction in dependence of the compression
factor.

detection excitation
beam pulse
X
N \‘ )
T adhesive tape

~——————silicone loop

milk/water

Figure 8. Schematic of experimental setup of non-contact photo-
acoustic imaging. Photoacoustic waves are excited by short laser
pulses. The ultrasonic signals are measured on the surface of the
sample using a non-contact photoacoustic imaging technique.

since for higher compression factors the error increases more
severely. In further numerical studies (not shown) we
observed that also for different discretizations a compression
factor of 4 is a good choice.

3.2. Results for experimental data

Experimental data have been obtained from a silicone tube
phantom as shown in figure 8. The silicone tube was filled
with black ink (Pelikan 4001 brillant black, absorption coef-
ficient of 54 /cm at 740 nm), formed to a knot, and immersed
in a milk/water emulsion. The outer and inner diameters of
the tube were 600 um and 300 pm, respectively. Milk was
diluted into the water to mimic the optical scattering prop-
erties of tissue; an adhesive tape, placed on the top of the
water/milk emulsion, was used to mimic skin. Photoacoustic
signals were excited at a wavelength of 740 nm with nano-
second pulses from an optical parametric oscillator pumped
by a frequency doubled Nd:YAG laser. The radiant expose
was 105 Jm~2, which is below the maximum permissible
exposure for skin of 220 Jm~2. The resulting ultrasonic sig-
nals were detected on the adhesive tape by a non-contact
photoacoustic imaging setup as described in [18]. In brief, a
continuous wave detection beam with a wavelength of
1550 nm was focused onto the sample surface. The diameter
of the focal spot was about 12 um. Displacements on the
sample surface, generated by the impinging ultrasonic waves,

0 2 4 6

Figure 9. Reconstruction results using compressed sensing mea-
surements. Maximum intensity projections of a silicone loop along
the z-direction (a), the x-direction (b), and the y-direction (c).

change the phase of the reflected laser beam. By collecting
and demodulating the reflected light, the phase information
and, thus, information on the ultrasonic displacements at the
position of the laser beam can be obtained. To allow three-
dimensional measurements, the detection beam is raster
scanned along the surface. The obtained displacement data
does not fulfill the wave equation and cannot be used for
image reconstruction directly. Thus, to convert the displace-
ment data to a quantity (roughly) proportional to the pressure,
the first derivative in time of the data was calculated [5].
Using this setup, point-wise pressure data on the mea-
surement surface have been collected for 4331 = 71 x 61
detector positions over an area of 7 mm x 6 mm. From this
data we generated m = 1116 compressed sensing measure-
ments, where each detector location has been used d = 10
times in total. Figure 9 shows the maximum amplitude pro-
jections along the z, x, and y-direction, of the three-dimen-
sional reconstruction from compressed sensing data using
algorithm 3. The sparsified pressure has been reconstructed
by minimizing (10) with the FISTA using 500 iterations and a
regularization parameter of 107. Furthermore, the three-
dimensional reconstruction has been evaluated at
110 x 122 x 142 equidistant grid points. For comparison
purposes, figure 10 shows the maximum amplitude projec-
tions from the UBP algorithm 1 applied to the original data
set. We observe that there is only a small difference between
the reconstructions in terms of quality measures such as
contrast, resolution and signal-to-noise ratio. Only, the
structures in the compressed sensing reconstruction appear to
be slightly less regular. A detailed quality evaluation is
beyond the scope of this paper, which aims at serving as proof
of principle of our two-stage compressed sensing approach
with sparsifying transforms. However, the compressed sen-
sing approach uses only a fourth of the number of
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Figure 10. Reconstruction results using full measurements. Max-
imum intensity projections of a silicone loop along the z-direction
(a), the x-direction (b), and the y-direction (c).
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Figure 11. Histograms of experimental data. (a) Histogram for
measured pressure values (normalized to the interval [0, 1]). (b)
Histogram for measured pressure value after applying the sparsifying
transform T.

measurements of the original data set. This clearly demon-
strates the potential of our compressed sensing scheme for
decreasing the number of measurements while keeping the
image quality.

Figure 11 shows histograms of the pressure values before
and after applying the sparsifying temporal transform. In both
cases the histograms are concentrated around the value zero.
This implies the approximate sparsity and therefore justifies
our approach, even if the phantom is not a superposition of
uniformly absorbing spheres. It further shows that for the
present situation one could even apply our two-stage proce-
dure without applying a sparsifying temporal transform.

4. Discussion

In this paper, we established a novel compressed sensing
approach for PAT using the concept of sparsifying temporal

transforms. The presented results demonstrate that our
approach allows to reduce the number of measurements at
least by a factor of four compared to standard point mea-
surement approaches (see figures 5, 9 and 10). As a main
outcome of this paper, we developed a novel two-stage image
reconstruction procedure, that consists of a data recovery step
using ¢!-minimization applied to the sparsifying data and a
backprojection procedure (see algorithm 2). As outlined in
section 2.3 such a two-stage approach is numerically much
faster than existing compressed sensing approaches for PAT,
which recover the initial pressure distribution p,, directly from
compressed sensing measurements.

As a further benefit, the developed concept of sparsifying
temporal transforms justifies the use of more general classes
of measurement matrices than included in state of art com-
pressed sensing approaches in PAT. To ensure sparsity, the
standard approach is choosing a suitable sparsifying basis in
the spatial domain. Temporal transforms overcome restric-
tions on the type of measurement matrices of such a standard
approach. Since any temporal transform intertwines with the
spatial measurements our approach can be used in combina-
tion with any measurement matrix that is incoherent to the
pixel basis. This includes binary random matrices such as the
Bernoulli, Hadamard, or expander matrices (see the appendix
for details). According to the compressed sensing theory,
expander matrices can be used with binary entries 0 and 1.
Bernoulli and Hadamard matrices, on the other hand, should
be used with a mean of zero (achieved, for example taking 31
as binary entries). As 0/1 entries can be practically most
simply realized, for Bernoulli and Hadamard matrices the
mean value has to be subtracted after the measurement pro-
cess [9]. Avoiding such additional data manipulations is one
reason why we currently work with expander matrices.
Another reason is the sparse structure of expander matrices
which can be used to accelerate image reconstruction. In
future work, we will also investigate the use of Bernoulli and
Hadamard matrices in combination with sparsifying temporal
or spatial transforms, and compare the performance of these
measurement ensembles in different situations.

As mentioned in the introduction, patterned interrogation
can be used to practically implement compressed sensing in
PAT. It has been realized by using a digital micromirror
device [9, 10], where a Fabry—Perot sensor was illuminated
by a wide-field collimated beam. The reflected beam, carrying
the ultrasonic information on the acoustic field, was then
sampled by the DMD and the spatially integrated response
was measured by a photodiode. Another possibility is the
application of spatial light modulators (SLMs), which are able
to modulate the phase of the light. By using such SLMs
arbitrary interrogation patterns can be generated directly on a
sample surface [33]. SLMs are commercially available for a
wavelength of 1550 nm, which is the most common wave-
length used in optical detection schemes. However, also for
other wavelengths appropriate devices are available. State-of-
the-art SLMs provide typical resolutions between
1920 x 1080 pixels and 4094 x 2464 pixels, which is suf-
ficient for the compressed imaging scheme presented in this
work. For a resolution of 1920 x 1080, the typically
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achieved frame rate is 60 Hz. This is faster than the pulse
repetition rate of commonly used excitation laser sources for
PAT, thus enabling single shot measurements. If a faster
repetition rate is required, one could use SLMs with a higher
frame rate. These, however, usually exhibit lower resolution.

For the Fabry—Perot etalon sensors, the wavelength of the
interrogation beam has to be tuned, such that it corresponds to
the maximum slope of the transfer function of the sensor.
Since for the patterned interrogation scheme, only one
wavelength is used for the acquisition of the integrated
response this demands high quality Fabry—Perot sensors with
highly uniform sensor properties. For non-contact schemes,
using Mach-Zehnder or Michelson based demodulation, the
sensitivity of the sensor does not depend on the wavelength.
However, if the surface is not adequately flat, the phase of the
reflected light is spatially varying. For homodyne detection, a
relative phase difference of 7/2 between the reference and
interrogation beam should be maintained to ensure maximum
sensitivity. Since only one reference beam is used, a spatially
varying phase leads to changes in sensitivity over the detec-
tion surface and maximum sensitivity is only achieved for
areas with a phase difference of 7/2. For heterodyne detec-
tion, the absolute phase difference between the reference and
interrogation beam is not relevant and the interferometer does
not require active stabilization. However, distortions in the
demodulated compressed signal can occur if the relative
phases between the individual interrogation beams are non-
zero and if the respective signals are not separated in time. For
both types, homodyne and heterodyne interferometers, the
phase modulation capability of SLMs offers the possibility to
compensate for these effects. In general, each pixel of an
SLM can shift the phase of light at least up to 27 and the
resulting phase distribution is impressed on the reflected
beam. Separate lens functions can be applied to each detec-
tion point individually by using distinct kernels for each of
these points [34]. In case the shape of the sample surface is
known, the phase at each detection point can be chosen to
compensate for the phase shifts caused by the imperfect
sample surface. With this method it is even possible to choose
different focal distances for each detection point, so that
detection on even rougher surfaces could be facilitated. As an
alternative to Mach-Zehnder or Michelson interferometers,
one could use self-referential interferometers as, e.g., the two-
wave mixing interferometer [35]. Here the reflected inter-
rogation beam is mixed with a wave front-matched reference
beam, generated by diffraction from a photorefractive crystal.
Thereby, the interferometer is intrinsically insensitive to low-
frequency spatial phase variations.

5. Conclusion

To speed up the data collection process in sequential PAT
scanning while keeping sensitivity high without significantly
increasing the production costs, one has to reduce the number
of spatial measurements. In this paper we proposed a com-
pressed sensing scheme for that purpose using random mea-
surements in combination with a sparsifying temporal

transform. We presented a selected review of compressed
sensing that demonstrates the role of sparsity and randomness
for high resolution recovery. Using general results from
compressed sensing we were able to derive theoretical
recovery guarantees and efficient algorithms for our approach
based on sparsifying temporal transforms. We demonstrated
that our approach allows for the reduction in the number of
measurements by a factor of four compared to standard point-
approaches, while providing a comparable image quality.
Therefore, integrating patterned interrogation together with
the two-stage reconstruction procedure developed in this
paper, has the potential to significantly increase the imaging
speed compared to sequential PAT scanning approaches.
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Ingredients from compressed sensing

In this section we present the basic ingredients of compressed
sensing that explains the choice of the measurement matrices
and the role of sparsity in PAT. The aim of compressed
sensing is to stably recover a signal or image modeled by
vector x € R” from measurements

y = Ax + e. (A.1)

Here, A € R™*" with m < n is the measurement matrix, e is
an unknown error (noise) and y models the given noisy data.
The basic components that make compressed sensing possible
are sparsity (or compressibility) of the signal X and some form
of randomness in the measurement matrix A.

A.1. Sparsity and compressibility

The first basic ingredient of compressed sensing is sparsity,
that is defined as follows.

Definition 1 (Sparse signals). Let s € N and x € R". The
vector X is called s-sparse, if [|x||p :== §({i € {L,...,n}
| x[i] = 0}) < s. One informally calls X sparse, if it is
s-sparse for sufficiently small s.

In definition 1, #(S) stands for the number of elements in
a set S. Therefore ||x||y counts the number of non-zero entries
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in the vector X. In the mathematical sense || - ||y is neither a
norm or a quasi-norm6 but it is common to call || - ||y the
¢%-norm. It satisfies ||x||p = lim,,o||x||}, where

[Ix][, = » le[i]l” with p > 0,
i=1

stands for the £7-norm. Recall that || - ||, is indeed a norm for
p > 1 and a quasi-norm for p € (0, 1).

(A2)

Signals of practical interest are often not sparse in the
strict sense, but can be well approximated by sparse vectors.
For that purpose we next define the s-term approximation
error that can be used as a measure for compressibility.

Definition 2 (Best s-term approximation error). Let s € N
and x € R". One calls

oy (x) = inf{||x — x{||; | x; € R" is s-sparse}

the best s-term approximation error of X (with respect to
the ¢!-norm).

The best s-term approximation error oy (X) measures, in
terms of the ¢!-norm, how much the vector x fails to be s-
sparse. One calls x € R” compressible, if o;(x) decays suffi-
ciently fast with increasing s. The estimate (see [36])

g — g/

X) <
) < T llly

forqg € (0, 1) (A3)
shows that a signal is compressible if its £9-norm is suffi-

ciently small for some ¢ < 1.

A.2. The RIP in compressed sensing

Stable and robust recovery of sparse vectors requires the
measurement matrix to well separate sparse vectors. The RIP
guarantees such a separation.

Definition 3 (Restricted isometry property (RIP)). Let s € N
and 6 € (0, 1). The measurement matrix A € R™*" is said to
satisfy the RIP of order s with constant 4, if, for all s-sparse
x € R,

(1 = &IxIB < [JAx]; < (1 + O)]Ix]f5. (A4)

We write &, for the smallest constant satisfying (A.4).

In recent years, many sparse recovery results have been
derived under various forms of the RIP. Below we give a
result derived recently in [37].

Theorem 4 (Sparse recovery under the RIP). Let x € R”
and let y € R™ satisfy ||y — Ax||, < € for some noise level
€ > 0. Suppose that A € R"*" satisfies the RIP of order 2s

S A quasi-norm satisfies all axioms of a norm, except that the triangle
inequality is replaced by the weaker inequality ||x; + Xo|| < K (||xi]| + [|x2]])
for some constant K > 1.

10

with constant 6, < 1/2, and let x, solve

min||z[|;
z

(A.5)
such that ||Az — y|| < €.
Then, for constants ¢, ¢, only depending on
0o [|X — X4 < o (X)/VS + cr€.
Proof. See [37]. O

Theorem 4 states stable and robust recovery for mea-
surement matrices satisfying the RIP. The error estimate
consists of two terms: ¢, e is due to the data noise and is
proportional to the noise level (stability with respect to noise).
The term ¢, 0;(x)/~/s accounts for the fact that the unknown
may not be strictly s-sparse and shows robustness with respect
to the model assumption of sparsity.

No deterministic construction is known providing large
measurement matrices satisfying the RIP. However, several
types of random matrices are known to satisfy the RIP with
high probability. Therefore, for such measurement matrices,
theorem 4 yields stable and robust recovery using (A.5). We
give two important examples of binary random matrices
satisfying the RIP [36].

Example 5 (Bernoulli matrices). A binary random matrix
B,,,c {—1,1}"™*" is called the Bernoulli matrix if its
entries are independent and take the values —1 and 1 with
equal probability. A Bernoulli matrix satisfies 6, < 6 with a
probability tending to 1 as m — oo, if

m = Css(log(n/s) + 1) (A.6)

for some constant Cs5 > 0. Consequently, Bernoulli-measure-
ments yield stable and robust recovery by (A.5) provided that
(A.6) is satisfied.

Bernoulli matrices are dense and unstructured. If n is
large then storing and applying such a matrix is expensive.
The next example gives a structured binary matrix satisfying
the RIP.

Example 6 (Subsampled Hadamard matrices). Let n be a
power of two. The Hadamard matrix H, is a binary
orthogonal and self-adjoint n X n matrix that takes values
in {—1, 1}. It can be defined inductively by H; = 1 and

0 %)

Hn - Hn
Equation (A.7) also serves as the basis for evaluating H,x
with nlogn floating point operations. A randomly sub-
sampled Hadamard matrix has the form
P, H, € {—1, 1}"™*" where P, , is a subsampling operator
that selects m rows uniformly at random. It satisfies d,; < ¢
with probability tending to 1 as n — oo, if

Hy, := (A7)

m > Dsslog (n)* (A.8)
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for some constant Ds > 0. Consequently, randomly sub-
sampled Hadamard matrices again yield stable and robust
recovery using (A.5).

A.3. Compressed sensing using lossless expanders

A particularly useful type of binary measurement matrices for
compressed sensing are sparse matrices having exactly d ones
in each column. Such a measurement matrix can be inter-
preted as the adjacency matrix of a left d-regular bipartite
graph.

Consider the bipartite graph (L, R, E) where
L :={1,...,n} is the set of left vertices, R := {1,...,m} the set
of right vertices and £ C L X R the set of edges. Any ele-
ment (i, j) € E can be interpreted as a edge joining vertices i
and j. We write

N{)={jeR|3ielwith(i,j) € E}
for the set of (right) neighbors of I C L.

Definition 7 (Left d-regular graph). The bipartite
graph (L, R, E) is called d-left regular, if 4[N ({i})] = d for
every i € L.

According to definition 7, (L, R, E) is left d-regular if
any left vertex is connected to exactly d right vertices. Recall
that the adjacency matrix A € {0, 1}™*" of (L, R, E) is
defined by A[j,i]=1 if (i,j) € E and A[j, i]=0 if
(@i, j) € E. Consequently the adjacency matrix of a d-regular
graph contains exactly d ones in each column. If d is small,
then the adjacency matrix of a left d-regular bipartite graph is
sparse.

Definition 8 (Lossless expander). Let s € N and 6 € (0, 1).
A d-left regular graph (L, R, E) is called an (s, d, 0)-lossless
expander, if

SN > (1 — 0)d t[Nfor I C L with£[I] <s. (A.9)

We write 6, for the smallest constant satisfying (A.9).

It is clear that the adjacency matrix of a d-regular
graph satisfies [N (I)] < d t[I]. Hence an expander
graph satisfies the two sided estimate (1 — 0)d §[I] <
#IN ()] < d t[I]. Opposed to Bernoulli and subsampled
Hadamard matrices, a lossless expander does not satisfy the
{%-based RIP. However, in such a situation, one can use the
following alternative recovery result.

Theorem 9 (Sparse recovery for lossless expander). Let
x € R"and lety € R" satisfy||ly — Ax||; < € for some noise
level € > 0. Suppose that A is the adjacency matrix of a
(2s, d, 0y5)-lossless expander having 6, < 1/6 and let x,
solve

minl|z||;
z (A.10)
such that ||Az — y||; < e.
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Then, for constants ci, ¢ only depending on 0, we
have ||x — x,1 < c10;(X) + cr¢/d.

Proof. See [36, 38]. O

Choosing a d-regular bipartite graph uniformly at random
yields a lossless expander with high probability. Therefore,
theorem 9 yields stable and robust recovery for such types of
random matrices.

Example 10 (Expander matrix). Take A € {0, 1}"*" as the
adjacency matrix of a randomly chosen left d-regular bipartite
graph. Then A has exactly d ones in each column, whose
locations are uniformly distributed. Suppose further that for
some constant ¢, only depending on 6 the parameters d and m
have been selected according to

m > cgs(log(n/s) + 1)
d:[210g(n/s) +2]

0
Then, 6, < 6 with a probability tending to 1 as n — oo.
Consequently, for the adjacency matrix of a randomly chosen
left d-regular bipartite graphs, called the expander matrix, we
have a stable and robust recovery by (A.10).
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