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Abstract: Microfluidics is an engineering tool used to control and manipulate fluid flows, with
practical applications for lab-on-a-chip, point-of-care testing, and biological/medical research.
However, microfluidic platforms typically lack the ability to create a fluidic duct, having an
arbitrary flow path, and to change the path as needed without additional design and fabrication
processes. To address this challenge, we present a simple yet effective approach for facile, on-demand
reconfiguration of microfluidic channels using flexible polymer tubing. The tubing provides both
a well-defined, cross-sectional geometry to allow reliable fluidic operation and excellent flexibility
to achieve a high degree of freedom for reconfiguration of flow pathways. We demonstrate that
microparticle separation and fluid mixing can be successfully implemented by reconfiguring the
shape of the tubing. The tubing is coiled around a 3D-printed barrel to make a spiral microchannel
with a constant curvature for inertial separation of microparticles. Multiple knots are also made in the
tubing to create a highly tortuous flow path, which induces transverse secondary flows, Dean flows,
and, thus, enhances the mixing of fluids. The reconfigurable microfluidics approach, with advantages
including low-cost, simplicity, and ease of use, can serve as a promising complement to conventional
microfabrication methods, which require complex fabrication processes with expensive equipment
and lack a degree of freedom for reconfiguration.
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1. Introduction

Microfluidics is a technology capable of controlling and transferring small quantities of liquids,
ranging from nanoliters to microliters, which enables multiple biological assays and high-throughput
screening. Particle separation and fluid mixing are important in biochemical and clinical applications
for the identification and analysis of specific target molecules or cells. To achieve this, microfluidic
channels have been integrated into miniaturized (lab-on-a-chip) and point-of-care testing devices as
indispensable components with various advantages, such as ensuring precise control of a fluid and
reducing the time and costs associated with routine biological analysis [1]. In particular, microfluidic
technologies play a key role in the separation of cells or microparticles and the rapid mixing of fluids,
which have been demonstrated with microfabricated, complicated structures, such as a chaotic mixer,
serpentine channels, herringbone structures, and a contraction-expansion array channel [2–8].

Inertial microfluidics is a useful technique that exploits a unique physical phenomenon in
microchannels, which utilizes the inertia of fluid flows at intermediate ranges of the Reynolds number
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(Re) (1 < Re < 100). This technique enables high throughput separation of microparticles and the
mixing of fluids without mechanical or electrical assistance. Inertial microfluidics-based separation
and mixing have shown unique utility in various applications, such as inertial focusing, ordering,
and separation of microparticles and blood cells [9], DNA [10], bacterial cells [11,12], and tumor
cells [13]. Most microfluidic devices, including devices for inertial microfluidics, are fabricated
by conventional photolithography and soft lithography processes based on polydimethylsiloxane
(PDMS) [14]. Although the fabrication process is now well established and widely used, there are
several limitations to the process in terms of design flexibility and user-friendliness. First, changing the
device application inevitably accompanies the modification of microfluidic devices with new designs
and dimensions. For example, microfluidic mixers typically require sudden changes in flow paths to
achieve efficient mixing [15], and repetitive microfluidic patterns often have to be formed for sorting
microparticles [16]. Microfluidic methods, thus, require adjustment of channel geometries, according to
changing target applications, for different sizes of microparticles and cells [17]. Although microfluidic
devices fabricated using 3D printing technologies have been recently introduced, with the advantages
of rapid prototyping and easy fabrication, these devices have a major limitation in that channel
dimensions are restricted by the minimum resolution of a 3D printer [18]. The minimum resolution
of 3D printers is typically in the range of tens to hundreds of micrometers, which does not permit
microfabrication of fluidic channels smaller than 100 µm [19]. Recently, considerable efforts have
been also made to improve the design flexibility of microfluidic platforms using modular microfluidic
components [19] and punch-card-based microfluidics [20]. However, materials fabricating the channels
used above are rigid, which do not allow us to adapt or change their configurations as needed.

To overcome these limitations, we propose a new approach to reconfigurable microfluidics to
achieve facile, on-demand reconfiguration of microfluidic channels using flexible polymer tubing
(Figure 1). Because flexible tubing is commonly used in most microfluidics laboratories, it is easy
to access tubing components and to obtain a specific geometry of microchannels by configuring or
knotting tubing without microfabrication processes. To evaluate the performance of the reconfigurable
microfluidics platform, we demonstrated continuous separation of microparticles and the rapid mixing
of fluids. First, we separated 15-µm and 25-µm particles with the flexible tubing coiled on a 3D-printed
barrel by utilizing differential inertial focusing of particles of different sizes. Second, we confirmed
that the mixing efficiency of fluids significantly improves when flowing fluids through a series of
knots of flexible tubing. Thus, we successfully carried out particle separation and fluid mixing in the
reconfigurable microfluidics platform, which is intended to complement existing fabrication methods
for microfluidic channels and also improve the flexibility of microchannels for reconfiguration.

2. Materials and Methods

2.1. Materials

Tygon® tubing with an inner diameter (I.D.) of 190 µm and an outer diameter of 2 mm was
purchased from Cole-Parmer Inc. (Vernon Hills, IL, USA). For microparticle separation, 15-µm, 20-µm,
and 25-µm particles were obtained from Polysciences Inc. (Warrington, PA, USA). For fluid mixing,
100-nm fluorescent particles, purchased from Life Technologies Corp. (Carlsbad, CA, USA), were used.
The particles were re-suspended in 0.1% bovine serum albumin (BSA) solution (Sigma-Aldrich Co.,
St. Louis, MO, USA) at a concentration of 104 to 3 ˆ 104 beads/mL. BSA was used to passivate PDMS
surfaces from non-specific adsorption. PDMS for microchannel fabrication was purchased from Dow
Corning Inc. (Midland, MI, USA).

2.2. Microfluidic Setup and Analysis

A syringe pump (KD Scientific, Holliston, MA, USA) was used to flow sample solutions at a
constant flow rate. Microfluidic behaviors were observed using a charge coupled device (CCD) camera
(Nikon, Tokyo, Japan) and a high-speed camera (CASIO, Tokyo, Japan) equipped with a fluorescence
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microscope (Nikon) (Figure 2a). For analysis of spatial distributions of microparticles, the lateral
positions of the microparticles were measured using the image analysis software, ImageJ (National
Institutes of Health, Bethesda, MD, USA). After microparticle separation, the samples collected from
outlet 1 and outlet 2 were analyzed using a flow cytometer (BD Biosciences, San Jose, CA, USA)
(Figure 2b).

Micromachines 2016, 7, 139 3 of 10 

 

2.2. Microfluidic Setup and Analysis  

A syringe pump (KD Scientific, Holliston, MA, USA) was used to flow sample solutions at a 
constant flow rate. Microfluidic behaviors were observed using a charge coupled device (CCD) 
camera (Nikon, Tokyo, Japan) and a high-speed camera (CASIO, Tokyo, Japan) equipped with a 
fluorescence microscope (Nikon) (Figure 2a). For analysis of spatial distributions of microparticles, 
the lateral positions of the microparticles were measured using the image analysis software, ImageJ 
(National Institutes of Health, Bethesda, MD, USA). After microparticle separation, the samples 
collected from outlet 1 and outlet 2 were analyzed using a flow cytometer (BD Biosciences, San Jose, 
CA, USA) (Figure 2b). 

 
Figure 1. Photographs of reconfiguring flexible tubing for microparticle separation and fluid mixing. 
(a) A spiral microchannel is configured for microparticle separation by coiling the tubing onto a 
3D-printed grooved barrel. (b) The tubing knots generate abrupt changes in a flow direction to mix 
laminar flows through the tubing. It shows two different ways of knotting tubing (knot with or 
without an inner loop) and presents that even one without microfluidic experience can construct 
various channel geometries by simply making knots of tubing (scale bar: 1 cm). 

Figure 2. A reconfigurable microfluidics platform for microparticle separation. (a) Schematic 
showing the experimental setup for observation of the spatial distributions of microparticles after 
passing through the tubing. (b) Photographs of (left) a cross-section of a Tygon® tubing with an 
inner diameter of 190 µm and an outer diameter of 2 mm, and (right) a microchannel for 
measurement of the lateral distributions of the microparticles and for the collection of separated 
microparticles. (c) Photograph of the assembled tubing (35 cm in length) onto the grooved barrel 
that defines a fixed radius (1 cm) of the coiled tubing.  

Figure 1. Photographs of reconfiguring flexible tubing for microparticle separation and fluid mixing.
(a) A spiral microchannel is configured for microparticle separation by coiling the tubing onto a
3D-printed grooved barrel. (b) The tubing knots generate abrupt changes in a flow direction to mix
laminar flows through the tubing. It shows two different ways of knotting tubing (knot with or without
an inner loop) and presents that even one without microfluidic experience can construct various
channel geometries by simply making knots of tubing. (scale bar: 1 cm)
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Figure 2. A reconfigurable microfluidics platform for microparticle separation. (a) Schematic showing
the experimental setup for observation of the spatial distributions of microparticles after passing
through the tubing. (b) Photographs of (left) a cross-section of a Tygon® tubing with an inner diameter
of 190 µm and an outer diameter of 2 mm, and (right) a microchannel for measurement of the lateral
distributions of the microparticles and for the collection of separated microparticles. (c) Photograph of
the assembled tubing (35 cm in length) onto the grooved barrel that defines a fixed radius (1 cm) of the
coiled tubing. (scale bar: 1 mm)
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2.3. Fabrication of Microchannels for the Validation of a Reconfigurable Platform

A master mold for microchannels to provide fluidic access for the tubing was fabricated by
standard photolithography processes, including spin-coating of photoresist, ultraviolet (UV) exposure
through a photomask, development for the removal of the unexposed area of photoresist, and baking
for the removal of residual solvents and solidification of the photoresist structures. Then, microfluidic
channels were made by PDMS molding processes, including the mixing of PDMS with a curing agent,
hardening the mixture for 1 h at 75 ˝C, punching to form inlet and outlet holes, and irreversible
bonding between each PDMS microchannel and a glass slide. The PDMS microchannels presented
in this work are intended for use in characterization of particle separation and fluid mixing and
are unnecessary when used for practical applications using the reconfigurable microfluidics because
other commercial tubing accessories, such as Y-shape connectors, can be simply substituted for the
PDMS devices.

2.4. Fabrication of a Grooved Barrel

A grooved barrel was printed using a Mojo 3D printer (Stratasys, Eden Prairie, MN, USA).
The barrel has a diameter of 2.2 cm and a spiral groove with a width of 2 mm and a depth of 2 mm,
and a pitch of 6 mm (Figure 2c). The barrel is used for geometric guidance, which ensures that the
tubing has a fixed radius of curvature (~1 cm) and coiling pitch.

3. Results and Discussion

3.1. Microparticle Separation Using Coiled Flexible Tubing

A reconfigurable microfluidics platform was applied to microparticle separation using the flexible
tubing coiled onto the 3D-printed barrel, as shown in Figure 2c. Prior to the separation of microparticles,
we performed a computational simulation (COMSOL Multiphysics®, 5.1, COMSOL Inc., Burlington,
MA, USA) to predict a secondary flow induced by Dean flow in the coiled tubing, wherein rotating
flows in a cross-section of the tubing were induced. The Dean flow was enhanced as Re increased
(Figure 3a). Re is defined as ρUL/µ, where ρ is the density of the fluid, µ is its viscosity, U is its average
velocity, and L is a characteristic dimension of a channel cross-section. From the simulation results, we
predicted that microparticles flowing through the coiled tubing would laterally circulate, following the
Dean flow, and would be confined at a certain position where the two secondary flows bifurcate next
to the inner wall surface (Figure 3b, upper left). The stability of maintaining the equilibrium position
can be determined by balancing between inertial lift and Dean drag forces. Microparticles smaller than
a critical size will keep the flow path following the lateral secondary flows (Dean flow), as opposed to
being gathered in the equilibrium position of the coiled tubing (Figure 3b, upper right). To corroborate
our prediction, 20-µm and 25-µm fluorescent particles were, respectively, injected into the coiled
tubing, and their lateral position in the tubing was observed, as shown in Figure 3b. The obtained
images confirmed that 25-µm particles were aligned at the equilibrium lateral position, whereas
20-µm particles were dispersed throughout the tubing. The alignment of the larger microparticles
(25 µm in diameter) is attributed to the interplay between inertial lift forces and Dean drag forces.
In the circular cross-section of the tubing, microparticles can migrate to the periphery of the tubing
by shear-induced and wall-induced lift forces at high Re, which is known as the “tubular pinch”
effect [21]. The coiled tubing configuration generates centrifugal forces directed outward that induce
counter-rotating vortices (Dean flow). As a result of the interplay between the inertial lift and Dean
drag forces, the equilibrium position of the larger microparticles can be reduced in the position right
next to the inner wall of the tubing. While straight microchannels typically form multiple equilibrium
positions for particles influenced by inertial lift forces at high Re, additional inertial forces, such as
centrifugal forces and Dean drag forces, in a curved microchannel are superposed with the lift forces
and can reduce particle focusing into a single stream. Because the magnitudes of the inertial lift forces
and Dean drag forces highly depend on the diameter of microparticles, microparticles of different
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diameters can occupy different lateral positions. Due to the smaller diameter of the microparticles
(20 µm in diameter), the microparticles tend to position either above or below the center line, which
results in the continuous circulation of the microparticles, following the secondary lateral flows in
the coiled tubing at high Re over 22. We note that the polystyrene microparticles (ρ = 1.04 g/cm3)
used in this experiment have a density that is slightly higher than the surrounding medium. Their
sedimentation velocity due to the gravitational force is less than 1 µm/s while their residence time
in the tubing is typically less than a second. Thus, the behavior of particles is determined, not by the
gravitational force, but by inertial forces.
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Figure 3. Distributions of secondary flows and the focused microparticles in a cross-section of the
coiled tubing. (a) A computational simulation result predicts lateral flows induced by Dean flow in the
coiled tubing, which results in bifurcating circulation of microparticles smaller than a critical diameter
or focusing of microparticles larger than a critical diameter. Each arrow indicates a lateral flow velocity
with a scale factor of 0.45 (at high Re of ~22) and 25 (at low Re of 0.2), respectively, supporting that the
lateral flow is enhanced as Re increases. (b) A hypothetical diagram of the equilibrium positions of
25-µm and 20-µm particles in a cross-section of the tubing (top) and the corresponding experimental
results (bottom). The photographs were taken at the end of the tubing plugged in the inlet of the
microchannel for observation of microparticle distribution. Inner and outer denote the inner and outer
sides of the spiral channel, respectively. The applied flow rate was 200 µL/min. (scale bars: 100 µm)

To quantitatively validate the separation capability, we connected the tubing with a microfluidic
channel (2 mm in width) and measured the lateral positions of microparticles in the microfluidic
channel at different flow rates ranging from 50 to 300 µL/min, which correspond to Re values of 5.5´33.
Inertial migration of particles was first demonstrated by Segré and Silberberg in macroscale circular
tubing [22]. In recent years, inertial fluidic behaviors in intermediate flow rates (1 < Re < 100) and
microscale channels (from tens of microns to hundreds of microns in diameter) have been extensively
explored in which deterministic and controllable motions of particles and fluids were observed. We also
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observed similar behaviors of particle migration at the intermediate Re regime. The equilibrium
position was aligned to the right sidewall of the microchannel. The microparticles of three different
diameters (15, 20, and 25 µm) were respectively flowed through the coiled tubing. As predicted, 25-µm
particles coming out from the outlet of the microfluidic channels were aligned near the inner sidewall
of the tubing and exited along the right sidewall of the microchannel, and the alignment of 25-µm
particles was improved due to enhanced inertial lift forces as the flow rate increased to 300 µL/min
(Figure 4, left-row panels). Because microparticles smaller than the critical size are more affected by
the secondary flow, the particles were not confined at a certain lateral position of the tubing (Figure 4,
right-row panels). The ratio of the particle diameter (ap) to the channel diameter (D) is a critical factor
for inertial focusing in a straight pipe and needs to be ap/D ě 0.07 [23]. For D = 190 µm, ap needs to be
larger than 13.3 µm to satisfy the criterion. In a curved microchannel, the secondary flow, Dean flow
can perturb flowing particles and affect their equilibrium position. The ratio of inertial lift and Dean
drag (Rf = 2ap

2R/D3) considerably increase with ap [24] and so relatively strong Dean forces for 15-µm
particles likely result in disruption of particle focusing, where R is a radius of curvature of the coiled
tubing. In a curved microchannel, inertial particle focusing depends on the balance between inertial lift
and Dean drag forces. The focusing behavior of 20 µm-particles is significantly affected by a flow rate
(Figure 4) and this can be explained by increased Dean drag forces which can destabilize a preferred
focusing position at high Re over 22.
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In addition to measuring the lateral positions of microparticles, we demonstrated the separation
and collection of microparticles using the microchannel with two outlets connected to the coiled
tubing (Figure 2b). The populations of microparticles collected from outlet 1 and outlet 2, respectively,
were analyzed by a flow cytometry. The flow cytometry results support that two different sizes of
microparticles (15 and 25 µm in diameter) mixed in a solution can be separated and significantly
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enriched when flowing through the coiled tubing with a throughput of 4.6 ˆ 103 microparticles/min.
A solution containing the two different sizes of microparticles (15 µm and 25 µm with an initial ratio
of 38.6% and 61.4%, respectively) was injected into the coiled tubing at a flow rate of 200 µL/min.
The purity of 15-µm particles in the sample collected from outlet 1 was significantly improved to
98.5 ˘ 2.7%, whereas the purity of 25-µm particles in the sample from outlet 2 was 75.6 ˘ 4.4%
(n = 3). This is most likely due to the continuous circulation of smaller microparticles (15 µm) by the
balance between inertial lift and Dean drag forces. Additionally, the recoveries of 15-µm and 25-µm
microparticles were determined to be 50.9 ˘ 5.3% in outlet 1 and 99.5 ˘ 0.9% in outlet 2 (Figure 5)
(n = 3). Recovery is defined as the number of sorted target particles divided by the total number of the
particles injected.
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3.2. Mixing of Laminar Flows Using Knots of Tubing

We then demonstrated that a reconfigurable microfluidics platform could be applied to achieve
high mixing efficiency with a simple configuration of tubing with a series of knots (Figure 6).
Mixing efficiency was defined as a standard deviation, σ, of the fluorescence distribution. A value of
0 corresponds to complete mixing and 0.5 to complete segregation. For the mixing of fluids, multiple
knots (trials with 3 and 10 knots) were made within a tubing (Figure 6c). We did not observe any
structural changes in the knots during experiments. A solution containing fluorescent nanoparticles
(100 nm in diameter) and the buffer solution were injected through a Y-shaped microchannel with two
inlets, and the intersection where the two fluids met was directly connected to the tubing inlet without
premixing in the microchannel (Figure 6b). Because the diffusion coefficient (Ddiff) of nanoparticles
(100 nm, ~10´8 cm2/s) is about three order magnitudes lower than small fluorescent molecules (FITC,
Ddiff = 0.64 ˆ 10´5 cm2/s), the Peclet number (Pe) of the mass transport across the two laminar flows
driven by diffusion is not effective. Thus, the mixing of the nanoparticles in laminar flows requires
a certain mixing component to achieve complete homogenization in fluids. Efficient mixing can be
achieved by knots of tubing because the direction of the secondary lateral flow (Dean flow) is irregular
and dramatically changes at every turn of knotted tubing, which causes non-uniform lateral circulatory
flows, and subsequently causes effective mixing in the knotted tubing. In addition, mixing efficiency is
predicted to be improved when a flow rate increases because the Dean number is proportional to the
Reynolds number [25]. At low Re (1.1) herein, efficient mixing was not achieved, even after passing
through 10 serial knots of tubing. However, when we increased Re to 22.3, the complete mixing of
100-nm fluorescent particles was achieved after flowing through 10 serial knots of tubing (Figure 6d).
The standard deviation (σ) of the fluorescence intensity across the microchannel is plotted in Figure 6e,
revealing that the number of knots of tubing is more critical to achieve complete mixing of fluids
than influences of Re. This is because the mixing efficiency affected by Re plateaued above a certain
flow rate. The cross-sectional deformation of the knotted tubing may occur and affect the mixing
performance; however, the tubing was adequately (not too much tightly) knotted to minimize such
deformation. Thus, the mixing of fluids is mainly affected by abrupt changes in a flow direction rather
than subtle changes in a channel cross-section. These results support that the proposed reconfigurable
microfluidics platform can simply replace conventional microfluidic components and facilitate facile
integration of the components as shown in Figure 7.
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4. Conclusions and Perspectives

We demonstrated that size-based separation of microparticles and mixing of laminar flows at
low Re can be achieved by coiled and knotted flexible tubing. We constructed coiled tubing using a
3D-printed barrel that fixes tubing to a coiled configuration. Microparticles were laterally circulated,
following the secondary flow (Dean flow) generated by the curvature of the coiled tubing, and the
lateral positions of the microparticles could be confined at a certain position when the particle size
was greater than 20 µm. The enrichment of microparticles was successfully demonstrated using a
mixture of microparticles with diameters of 15 µm and 25 µm. The purity of 15-µm particles in outlet 1
was 98.5 ˘ 2.7% while the recovery rate of 25-µm particles from outlet 2 was 99.5 ˘ 0.9%. Because the
focusing and separation of microparticles in the coiled tubing is attributed to the balance between
the secondary lateral flow (Dean flow) and inertial lift forces, the critical size for separation can be
determined by the relative difference between the particle diameter, the inner diameter of the coiled
tubing, and the Dean number of the flow. To evaluate the versatility of the reconfiguration approach,
we uncoiled the tubing and tied it to make serial knots to induce abrupt changes in a lateral flow
direction and improve the mixing of fluids. The knots of tubing were made to form repeating tortuous
flow paths that yield efficient mixing of laminar flows even at low Re (5.6–22.3). These knots of tubing
induced the secondary circulating flows in irregular directions, resulting in local agitation and effective
mixing of laminar flows in the tubing.

The strong point of the proposed reconfigurable microfluidics platform using flexible tubing is
that it allows one even without microfabrication experiences to construct microfluidic channels for
particle separation and fluid mixing, and that the shape of flexible tubing can be easily adapted to a
certain configuration when required. In this study, we demonstrated the utility of the reconfigurable
flexible tubing-based microfluidics platform as a substitution for the existing microfluidic components
for microparticle separation and fluid mixing. More importantly, our proposed approach can be
applied to the research field of microfluidic chemical synthesis, which requires proficiency in mixing
and separating product particles, as well as robust reliability in enduring harsh chemical conditions
(nearly impossible to achieve with conventional PDMS-based microfluidic devices due to the inherent
characteristics of PDMS) [26]. The construction of a reconfigurable microfluidics system using
chemical-resistant flexible tubing, such as Teflon tubing, would make the design and fabrication
of a microfluidic system much more straightforward, in which a series of chemical mixing, synthesis,
and size-based separation can simultaneously take place, as shown in Figure 7. The proposed platform
will easily extend its applicability to chemical screening and synthesis if a microfluidic breadboard is
printed in thermoplastic materials with chemical resistance using a 3D printer [19].
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