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The enhancement in dewaterability of waste activated sludge (WAS) by oxidative treatment using
thermally- and alkali-activated persulfates (i.e., peroxymonosulfate (PMS) and peroxydisulfate (PDS))
was studied with two indices representing dewaterability change, i.e., centrifuged weight reduction
(CWR) and standardized-capillary suction time (SCST). The tested conditions include 50 �C/PMS, 50 �C/
PDS, 80 �C/PMS, and 80 �C/PDS as thermally-activated persulfate systems and NaOH/PMS, NaOH/PDS,
KOH/PMS, and KOH/PDS as alkali-activated persulfate systems. The oxidation by activated persulfates
caused the disintegration of bacterial cells and extracelluar polymeric substance (EPS) of WAS, affecting
the sludge dewaterability. The highest dewaterability was found at the KOH/PDS treatment in CWR and
at the 80 �C/PDS treatment in SCST. The EPSs were stratified as soluble, loosely-bound (LB) and tightly-
bound (TB) fractions, and contents of protein and polysaccharide in each fraction were measured to
characterize the EPS matrix before and after treatments. The statistical analysis of the relationship be-
tween EPS character and dewaterability indicated that the protein content in LB-EPS was the dominant
negative factor for the dewaterability represented by SCST, whereas the polysaccharide content in
soluble-EPS was identified as the dominant positive factor for the dewaterability by CWR.
© 2016 Chinese Institute of Environmental Engineering, Taiwan. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Over the last few decades, the amount of municipal and in-
dustrial wastewater has tremendously increased worldwide along
with rapid industrialization and urbanization. As a cost-effective
method, the activated sludge process has been widely used to
treat various types of wastewaters. However, massive production of
waste activated sludge (WAS) has become another big challenge for
environmental engineers to resolve. In response to this challenge,
investigators have been conducting extensive research on the vol-
ume reduction and reuse of WAS [1e4].

WAS consists of microorganisms with various organic/inorganic
substances and has a high water content (over 90%) [5]. In order to
reduce the volume of WAS in wastewater treatment plants
(WWTPs), the primarily produced WAS is mechanically dewatered
Institute of Environmental
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d/4.0/).
by gravity settling, centrifugation or filtration/compression using a
filter (or a belt) press. However, bacterial cells and extracelluar
polymeric substances (EPSs) in WAS retain water, inhibiting the
sludge dewatering process [6,7]. As a result, the sludge treatment
cost (for dewatering and disposal) accounts for up to 60% of total
operating cost of wastewater treatment processes [8].

A proper pretreatment to disintegrate cells and EPSs in WAS is
beneficial to enhance the dewaterability of WAS and subsequently
reduce the sludge treatment cost in WWTPs. Several methods for
WAS disintegration have been investigated, e.g., chemical oxidation,
sonication, alkali-treatment, and their combined applications [9e12].
In particular, chemical oxidation is effective in disrupting cell mem-
branes and destructing the polymeric structures of EPSs [6,13e18].

Recently, persulfates (i.e., peroxymonosulfate (PMS) and per-
oxydisulfate (PDS)) are gaining attention as new chemical oxidants
for environmental applications including wastewater treatment,
soil and groundwater remediation, sludge pretreatment, etc.
[14e21]. Persulfates themselves are strong oxidants that favor two-
electron oxidation (E0 (S2O2�

8 /SO2�
4 ) ¼ 1.96 VSHE; E0 (HSO�

5 /
SO2�

4 ) ¼ 1.75 VSHE) [22,23]. Persulfates can also be converted into
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sulfate radical anion (SO��
4 ) by different ways such as thermal

activation, alkali activation, transition metal catalysis, and photo-
catalysis [24e28]. SO��

4 has a high redox potential for one-
electron transfer (E0 (SO��

4 /SO2�
4 ) ¼ 2.43 VSHE) [29], and is capable

of rapidly oxidizing a wide spectrum of organic compounds [30].
Several studies have reported the application of activated per-

sulfate systems to WAS dewatering. Zhen et al. have demonstrated
that the Fe(II)-catalyzed PDS oxidation increased the dewaterability
of WAS and the system performance could be further improved by
supplying heat or electricity [14e17]. PDS activated by zero valent
iron also has been shown to enhance the sludge dewaterability [18].
However, with aforementioned studies only limited to iron-
activated PDS systems, little is known about the feasibility of
thermal- and alkali-activated persulfate systems for WAS dew-
atering even if these systems could be good available alternatives to
the use of iron.

It is well known that the thermal activation of PDS yields 2 M
equivalents of SO��

4 (Eq. 1) [31]. In a mechanism analogous to the
PDS activation, PMS should produce SO��

4 and hydroxyl radical
(�OH) by thermal activation (Eq. 2). However, it is not clearly
documented whether PMS produces reactive radical species by
thermal activation. Obviously, elevating temperature will also
accelerate the direct non-radical reactions of PDS and PMS with
organic substrates.

S2O
2�
8 /

D
2SO��

4 (1)

HSO�
5/

D �OHþ SO��
4 (2)

Under strong alkaline conditions, the decomposition of PDS is
accelerated generating �OH (Eqs. 3e6) [25]. PMS also has been
suggested to undergo the alkali-activation to form �OH as an in-
termediate [32]. However, its detailed mechanism is not clearly
elucidated.
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The objectives of this study are: i) to comparatively assess the
potential of thermally- and alkali-activated persulfate systems for
enhancing the dewaterability of WAS, and ii) to identify the rela-
tionship between EPS character and WAS dewaterability.
2. Materials and methods

2.1. WAS sample and reagents

WASwas sampled at the end of secondary clarifier from the Gul-
Hwa wastewater treatment plant located in Ulsan, South Korea.
Sampled WAS was thickened by gravity settling for 24 h in the
laboratory and stored at 4 �C prior to use. The thickened WAS
sample had 14.1 ± 0.6 g L�1 of volatile suspended solids (VSS) with
pH 6.7 ± 0.2.

Chemicalsused in this study includepotassiumhydroxide, sodium
hydroxide (Daejung Chemical), sodium peroxydisulfate, potassium
peroxymonosulfate, potassium iodide, sodium bicarbonate, phenol,
sulfuric acid, sodium citrate, copper(II) sulfate, sodium hydroxide,
folin& ciocalteu's phenol reagent, sodiumphosphate dibasic, sodium
phosphatemonobasic, potassium chloride, sodium chloride, albumin
from bovine serum, and D-(þ)-glucose (SigmaeAldrich). All chem-
icals were of reagent grade and used without further purification. All
solutions were prepared in deionized water (> 18 MU cm) produced
from a Milli-Q ultrapure water-purification system (Millipore). Stock
solutions of persulfates (250mM for PMSand PDS, respectively)were
prepared prior to experiments.

2.2. Treatment of WAS by activated persulfate systems

Persulfate treatment with thermal- and alkali-activation was
conducted in a 100 mL solution containing WAS; a 10 mL of
250 mM persulfate stock solution was added into 90 mL WAS
sample (25 mM). For thermal activation, the solution temperature
was elevated to 50 or 80 �C in 3 min, and maintained constant (±
2 �C) during the entire reaction time of 1 h. The pH of WAS
decreased from 6.7 to 2.8 and 5.4 after treatments by PMS and PDS,
respectively.

Alkali-activation was conducted using 2.5 M NaOH or KOH at
25 �C. Pre-weighed powder of NaOH or KOH (10 g NaOH or 14 g
KOH) was directly added into a 100 mL solution containing per-
sulfate and WAS, and the solution was stirred for 1 h for reaction.
The pH was maintained at approximately 13.2e13.7 during the
treatment.

2.3. Analyses

2.3.1. Dewaterability
Two indices (i.e., centrifuged weight reduction (CWR) and

standardized-capillary suction time (SCST)) were used to evaluate
the change of WAS dewaterability by different treatments. CWR
indicates the weight reduction percentage of the centrifuged WAS
before and after the treatment. To measure the centrifuged weight
(CW) of WAS, 40 mL of the WAS sample was centrifuged at 3000 g
for 30 min, then the supernatant was gently discarded and the
remaining sludge sediment was weighed. The CW values for raw
and treated WAS samples (CWraw and CWtreated, respectively) were
analyzed, and the CWR values were calculated by Eq. 7. The positive
CWR value indicates the enhancement of WAS dewaterability.

CWR ð%Þ ¼
�
1� CWtreated

CWraw

�
� 100 (7)

SCST was used as another index for the dewaterability change,
which represents the filterability using a filter press type dew-
atering device. Capillary suction time (CST) for WAS was measured
by the Type 304B capillary suction timer (Triton) equipped with a
10 mm inner diameter funnel. SCST values were calculated by Eq. 8
using the CST values for raw and treated WAS samples. The SCST
value higher than unity indicates the enhancement of
dewaterability.

SCST ¼ CSTraw
CSTtreated

(8)

2.3.2. Stratification and analysis of EPS
The protocol of EPS extraction was based on the method sug-

gested by Yu et al. [33] with a slight modification. The procedure is
briefly described below. The WAS sample (30 mL) was taken and
centrifuged at 2000 g for 15 min. The supernatant was gently
poured into a separate bottle (soluble EPS). The remaining sedi-
ment was re-suspended to the original volume with a prepared
buffer solution (Na2PO4:NaHPO4:NaCl:KCl ¼ 2:4:9:1 in molar ra-
tios), and the suspension was centrifuged at 5000 g for 15 min. The
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supernatant was separated as loosely-bound EPS (LB-EPS). Again,
the remaining sediment was re-suspended to the original volume
with the buffer solution. The suspension was sonicated by an ul-
trasonic homogenizer (STH-750S, Sonictopia) at 20 kHz, 480 W for
10 min, and then centrifuged at 20,000 g for 20 min. The super-
natant was separated as tightly bound EPS (TB-EPS). All the pro-
cedures for EPS extraction were conducted at around 4 �C to
minimize the denaturing of samples.

EPS samples were filtered by a 0.45 mm hydrophilic polytetra-
fluroethylene (PTFE) membrane filter (HP045AN, Advantec MFS)
before analysis. The filtrates were used to measure concentrations
of protein and polysaccharide. To quantify the protein content in
each EPS fraction, Lowry method was used [34]. Polysaccharide in
each EPS fraction was analyzed by phenol-sulfuric acid method
using D-(þ)-glucose as a standard [35].

2.3.3. Statistical analysis
Pearson's correlation analysis was conducted to investigate the

linear relationship between EPS contents and dewaterability
change indices. Pearson's correlation coefficients (Rp) were pre-
sented for different correlations of two variables. The Rp value
ranges from�1 (perfect negative linear relationship) toþ1 (perfect
positive linear relationship), and the 0 value signifies no relation-
ship between the two variables. To verify the reliability of Rp values,
the confidence interval (p-value) was also calculated, e.g., it is
considered that the Rp value is statistically sound with 95% of
confidence interval when p-value is smaller than 0.05. The software
Sigmaplot 12.0 (Systat Software) was used for the analysis.

2.3.4. VSS and persulfate
VSS was measured by following the guidelines of the Standard

Methods [36]. The residual concentration of persulfate after the
reaction was measured by iodometry [37].

3. Results and discussion

3.1. Decomposition of persulfates in WAS

Using the iodometric analysis, concentrations of residual per-
sulfates were measured after 1 h reaction under different condi-
tions with and without thermal- or alkali-activation. In general,
PMS was decomposed to a greater extent than PDS. At room tem-
perature, 22% of initial PMS was decomposed by the reaction with
the WAS components, whereas PDS was decomposed by only 3%.
When the temperature was elevated to 50 �C, the decomposition
efficiencies of PMS and PDS were 65 and 10%, respectively. At 80 �C,
the decomposition efficiencies of PMS and PDS increased up to 80
and 83%, respectively.

With the addition of bases for alkali-activation, PMS was
completely decomposed in 1 h. However, PDS was decomposed by
89% with NaOH and by 97% with KOH. The higher decomposition
efficiency of PDS with KOH than NaOH appears to result from the
highermolar enthalpy of solution of KOH (�57.6 kJ mol�1) than that
of NaOH (�44.5 kJ mol�1) [38]. Indeed, the temperature of WAS
samples increased to 50.7 �C upon the addition of KOH, whereas the
addition of NaOH increased the temperature to 42.6 �C. The WAS
samples containing bases were slowly cooled down during the
treatment, and the average temperatures were 37.3 and 33.6 �C for
KOH and NaOH-treated samples, respectively.

3.2. Effect of persulfate treatment on WAS dewaterability

The change of WAS dewaterability by persulfate treatment was
evaluated by CWR and SCST (Fig. 1a and b). TheWAS dewaterability
represented by CWR increased under all treatment conditions
(Fig. 1a). The alkali-activated persulfate systems generally showed
greater CWR values (66e76%) than the thermally-activated systems
(29e68%). For thermally-activated persulfate systems, PMS showed
higher CWR values than PDS. For alkali-activation, PDS exhibited a
better performance than PMS even though PMS was completely
decomposed during the treatment. This observation implies that
the alkali-catalyzed decomposition of PMS does not significantly
produce reactive radical species to disintegrateWAS components; a
non-radical decomposition mechanism could be dominant.
Meanwhile, alkali-treatments without persulfate exhibited 50e54%
CWR values, indicating that the alkaline lysis of cells accounts for an
important portion of CWR by alkali-activated persulfates systems.

In terms of SCST, the dewaterability decreased in most of
treatment conditions (i.e., the SCST values are lower than unity)
except for the thermally-activated PDS system at 80 �C (Fig. 1b). The
PDS system at 80 �C dominates the production of SO��

4 and the
oxidation by SO��

4 is mainly responsible for the increase of SCST. It
appears that the SO��

4 non-selectively oxidizes the WAS compo-
nents including cell structures, EPSs, and intracellular substances
released from damaged cells, rendering the WAS medium less
viscous.

In contrast, the thermally-activated PMS system at 80 �C did not
increase SCST even though the amount of PMS consumed was
similar to that of PDS at 80 �C (refer to the Section 1). This result
may imply that the thermally-activated PMS system relies on the
direct non-radical reactions of PMS (likely selective reactions)
rather than the reactions of reactive radical intermediates such as
SO��

4 and �OH (non-selective reactions).
Meanwhile, a notable observation is that all the alkali-

treatments (with and without persulfates) drastically suppressed
the SCST value. The alkaline lysis of cells may release small colloidal
EPSs that render the WAS medium more viscous, subsequently
decreasing the SCST value. However, such small colloidal sub-
stances are readily removed by centrifugation (remaining in the
supernatant solution), leading to high CWR values.
3.3. Effect of persulfate treatment on EPS fractions

EPSs in raw and treated WAS samples were fractionated as
soluble EPS, LB-EPS, and TB-EPS, and protein and polysaccharide in
each EPS fraction were quantified (Figs. 2 and 3).

In almost all the treated samples, concentrations of protein and
polysaccharide in soluble EPS and LB-EPS increased compared to
untreated controls (Fig. 2a and b for protein, Fig. 3a and b for
polysaccharide). However, concentrations of protein and poly-
saccharide in TB-EPS decreased after treatment in most of cases
(except four conditions in Fig. 2c and one condition in Fig. 3c).
These observations collectively indicate that such treatments
disrupt and disintegrate the sludge flocs, shifting the fraction of EPS
from TB- to soluble or LB-EPS. The increase of TB-EPS found in a few
treatment cases may suggest that a certain fraction of EPS is
strongly-bound to cells or trapped in some rigid matrix (not even
released by sonication for the TB-EPS analysis), and is shifted to the
TB-EPS fraction after thermal or alkali-treatments.

Alkali-activated persulfate treatments tend to increase soluble
and LB-EPS more effectively than thermally-activated treatments,
which may be explained by the oxidative degradation of EPS.
Chemical oxidation does not only dissolve EPS but also degrade EPS.
As discussed earlier, the WAS disintegration by alkali-activated
persulfate systems relies on the alkaline cell lysis rather than
oxidation, which minimizes the loss of released EPSs by oxidative
degradation.
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3.4. Pearson's correlation analysis

Pearson's correlation analysis was conducted by correlating EPS
contents (Figs. 2 and 3) with dewaterability change indices (Fig. 1).
The correlations between six variables of EPS content (i.e., protein
and polysaccharide contents in soluble, LB-, and TB-EPS fractions)
and two variables of dewaterability change index (i.e., SCST and
CWR) were analyzed for three groups of treatment conditions (i.e.,
PMS, PDS, and PMS þ PDS) (6 � 2 � 3 ¼ 36 cases total). The Rp and
the p-value were presented for each case as shown in Table 1.

Strong negative correlations (Rp < �0.9) were found between
the protein content in LB-EPS and SCST in Group 1 and 2. This
observation is consistent with a previous finding that protein in LB-
EPS is a critical factor that lowers the dewaterability represented by
CST [7]. However, no correlation between the protein content in LB-
EPS and SCSTwas foundwhen the data for Group 1 and 2were used
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Table 1
Pearson's correlation analysisa between EPS contents and dewaterability change indices.

Group 1 (PMS)b Group 2 (PDS)c Group 3 (PMS þ PDS)d

SCST CWR SCST CWR SCST CWR

Protein Soluble EPS �0.619 (0.265) 0.592 (0.293) �0.534 (0.354) 0.76 (0.136) �0.395 (0.145) 0.52 (0.0471)
LB-EPS ¡0.958 (0.0104) 0.35 (0.563) ¡0.988 (0.00154) 0.289 (0.638) �0.468 (0.0787) 0.193 (0.491)
TB-EPS �0.408 (0.495) �0.682 (0.204) �0.4156 (0.44) �0.829 (0.083) �0.286 (0.301) �0.599 (0.0184)

Polysaccharide Soluble EPS �0.0399 (0.949) 0.945 (0.0153) �0.186 (0.764) 0.964 (0.0083) �0.145 (0.605) 0.883 (0.0000131)
LB-EPS �0.19 (0.76) 0.769 (0.128) 0.0202 (0.974) 0.949 (0.0137) �0.629 (0.824) 0.739 (0.00164)
TB-EPS �0.0907 (0.885) �0.237 (0.702) �0.42 (0.481) �0.885 (0.046) �0.2 (0.474) �0.665 (0.00681)

a Pearson's correlation coefficients (Rp) are presented with p-values (numbers in parentheses). Strong correlations (jRpj > 0.9) are indicated in bold.
b Group 1: Data for treatments using PMS (including thermally- and alkali-activated systems) were used.
c Group 2: Data for treatments using PDS were used.
d Group 3: All the data in Group 1 and 2 were used.
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together (Group 3); the slopes of the two regression lines for Group
1 and 2 are quite different (Fig. 4a) so that the integrated data of the
two groups do not provide a good correlation. This observation
indicates that the EPS properties in the treated WAS samples are
different depending on the type of persulfate employed, influ-
encing SCST differently.

On the other hand, strong positive correlations (Rp > 0.9) were
found between the polysaccharide content in soluble EPS and CWR
in Group 1 and 2, and also between the polysaccharide content in
LB-EPS and CWR in Group 2. It is generally acceptable that samples
with much soluble EPS (and even some of LB-EPS) exhibit high
CWR values because these EPS can be readily removed by centri-
fugation. However, it is not clearly understood why only the poly-
saccharide content (not the protein content) in soluble or LB-EPS
exhibits a good correlation with CWR, which warrants further
study. In the plot of the polysaccharide contents in soluble EPS
versus CWR values (Fig. 4b), the data points of Group 1 and 2 are
located closely, and thereby the integrated data of the two groups
(Group 3) exhibit a relatively good correlation (Rp ¼ 0.883, refer to
the value in Table 1).
4. Conclusions

The dewaterability of WAS was greatly enhanced by oxidative
treatments using thermally- and alkali-activated persulfates. The
change of dewaterability was quantified by two indices repre-
senting weight reduction and SCST. The WAS dewaterability
denoted by CWR increased in all the treated samples. In particular,
samples treated by alkali-activated persulfates showed greater
CWR values than those treated by thermally-activated persulfates.
The dewaterability denoted by SCST increased only by the
thermally-activated PDS system at 80 �C. The SCST values in all
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other treatment conditions were lower than unity. Non-selective
oxidation of WAS components by reactive radical intermediates
such as SO��

4 appears to be more effective in increasing SCST
compared to direct oxidation by persulfates and alkaline lysis that
selectively disintegrate WAS components.

The EPSs in WAS samples were stratified as soluble, LB-, and TB-
EPS fractions, and protein and polysaccharide contents in each
fraction were quantified. The amount of soluble and LB-EPS
increased in most of the treated samples, whereas that of TB-EPS
decreased in many conditions, indicating that the fraction of EPS
shifts from TB- to soluble or LB-EPS by those treatments. The
Pearson's correlation analysis showed that the protein content in
LB-EPS and the polysaccharide content in soluble-EPS were the
dominant negative factor for SCST and the dominant positive factor
for CWR, respectively.
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