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ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic patho-
gens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial re-
sistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study,
we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled condi-
tions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression
changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene
expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics
and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonis-
tic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions.

IMPORTANCE Infections involving multidrug-resistant pathogens are difficult to treat because the therapeutic options are lim-
ited. These infections impose a significant financial burden on infected patients and on health care systems. Despite years of anti-
microbial resistance research, we lack a comprehensive understanding of the intrinsic mechanisms controlling antimicrobial
resistance. This work uses two fine-scale genomic approaches to identify genetic loci important for antimicrobial resistance of
the opportunistic pathogen Pseudomonas aeruginosa. Our results reveal that antibiotics have more resistance determinants than
antiseptics/disinfectants and that gene expression upon exposure to antimicrobials is not a good predictor of these resistance
determinants. In addition, we show that when used together, genomewide gene expression and fitness profiling can provide
mechanistic insights into multidrug resistance mechanisms.
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Microbes in virtually every environment on earth are exposed
to and display resistance to antimicrobials. While antimi-

crobial resistance has primarily been studied in the context of
infection, both pathogenic and nonpathogenic bacteria in natural
environments display high levels of intrinsic resistance to clini-
cally relevant antimicrobials (1). This is true for many opportu-
nistic bacterial pathogens, including Pseudomonas aeruginosa,
which causes a range of chronic infections due in part to its recal-
citrance to modern antimicrobial therapies (2, 3). Whether in the
clinic or in the natural environment, P. aeruginosa encounters
multiple classes of antimicrobials, including traditional antibiot-
ics (e.g., penicillin), antiseptics (e.g., povidone-iodine), and disin-
fectants (e.g., bleach).

P. aeruginosa has recently been classified as an ESKAPE (En-
terococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Entero-
bacter species) pathogen, one of a group of six highly antibiotic-
resistant bacteria that are the primary causative agents of nosoco-
mial (hospital-acquired) infections (4). Despite its importance,

there are substantial gaps in our understanding of the intrinsic
mechanisms responsible for this bacterium’s ability to resist kill-
ing by antimicrobials. A primary approach to identify these intrin-
sic attributes has been to examine gene expression in the presence
of nonlethal levels of an antimicrobial (5–8), with the idea that
genes differentially regulated by low levels of an antimicrobial will
provide important insights into factors important for intrinsic
resistance. While these studies have provided tremendous insight
into how microbes respond to antimicrobials, most of the genes
identified in these studies have proven not to be important for
intrinsic resistance. There could be several reasons for this; for
instance, the use of antimicrobial levels that slow bacterial growth
causes a conflation of antimicrobial-specific gene expression shifts
with general growth-mediated ones (9), the use of undefined
growth medium (5–8) results in inconsistent physiology (10, 11),
and the use of different growth conditions hampers comparison
between studies.

Another useful approach to identify intrinsic mechanisms of
resistance has been to screen transposon mutant libraries for in-
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creased or decreased susceptibility to sub-MIC antimicrobials
(12–17). These studies have revealed novel resistance determi-
nants; however, these experiments have been performed with lim-
ited numbers of antimicrobials and are difficult to compare due to
differences in experimental design. In this study, we combined
gene expression analysis under highly controlled conditions with
high-throughput fitness profiling to elucidate intrinsic resistance
mechanisms to 14 antimicrobials in P. aeruginosa.

RESULTS
Gene expression in response to sub-MIC antimicrobial levels.
To examine the impact of antimicrobials on gene expression,
high-throughput RNA sequencing (RNA-seq) was performed on
planktonic P. aeruginosa cultures after 30 min of exposure to each
of 14 antimicrobials (Table 1). These antimicrobials represent dif-
ferent classes of antibiotics and clinically relevant antiseptics and
disinfectants. To eliminate gene expression changes due to varia-
tions in growth rate, cultures were exposed to the highest level of
antimicrobial that did not perceptibly alter growth rate. As ob-
served in other studies (5, 8, 16), this was generally 25 to 50% of
the MIC of the antimicrobial (Table 1). To further minimize gene
expression changes not directly resulting from antimicrobial ex-
posure, all experiments were performed in a chemically defined
medium with constant aeration and temperature. Genes exhibit-
ing �2-fold changes in mRNA levels (false discovery rate [FDR] of
�0.05) are reported (see Dataset S1 in the supplemental material).

Our results revealed that exposure to antimicrobials resulted in
relatively minor changes in transcription, with the majority of
antimicrobials affecting the expression of less than 100 (1.7%) of
the 5,978 P. aeruginosa PA14 genes. P. aeruginosa showed differ-
ential expression of the greatest number of genes in response to
gentamicin, altering the expression of 214 (3.6%) genes. In con-
trast, the beta-lactam antibiotic aztreonam altered the expression
of no genes by �2-fold (see Dataset S1 in the supplemental mate-
rial). Furthermore, H2O2 and ciprofloxacin exposure resulted in
differential regulation of 109 and 8 genes, respectively, in our
study, while previous studies showed differential regulation of 223

and 941 P. aeruginosa genes (5, 7). Despite the fact that we ob-
served fewer changes in gene expression than were found in pre-
vious studies, there was significant overlap between the gene ex-
pression profiles generated in this study and those of previous
studies examining the P. aeruginosa response to sub-MIC cipro-
floxacin and hydrogen peroxide (using the Fisher exact test, P �
3.6 � 10�6 for ciprofloxacin and P � 0.002 for hydrogen perox-
ide) (5, 7). This overlap occurred despite the fact that different
antimicrobial exposure times and growth conditions were used in
these studies.

To view the global features of our transcriptomic data, we first
conducted hierarchical clustering of RNA-seq data, focusing on
genes that showed differential regulation under at least two anti-
microbial conditions. Our results revealed that the data for anti-
microbials do not cluster by class or by mechanism of action
(Fig. 1). For example, the aminoglycosides gentamicin and neo-
mycin cluster strongly with each other but not with the aminogly-
coside tobramycin, while the beta-lactams cefoperazone and car-
benicillin cluster strongly with each other but not with aztreonam
or ampicillin. While most of the genes exhibiting transcriptional
changes upon exposure to multiple antimicrobial conditions were
of unknown function, genes previously shown to be important for
modulating the susceptibility of P. aeruginosa to oxidative stress
were differentially regulated upon exposure to the oxidizing
agents H2O2, bleach, and povidone-iodine, as seen previously (18)
(Fig. 1, yellow box). Additionally, multiple classes of antimicrobi-
als induced general stress response genes, such as those encoding
universal stress proteins (Fig. 1, blue box). These results reveal that
P. aeruginosa possesses specific and general responses to different
antimicrobials and that these responses are not predictive of anti-
microbial class or mechanism of action.

Identification of fitness determinants in response to sub-
MIC antimicrobial levels. While our transcriptomic results re-
vealed gene expression changes in response to antimicrobials, it is
not known whether these genes are important for intrinsic resis-
tance. To address this question, we performed transposon se-
quencing (Tn-seq) of P. aeruginosa in the presence of sub-MIC

TABLE 1 Relevant antimicrobial information, including RNA-seq and Tn-seq summaries

Antimicrobial Class
MIC (mg/ml or
as indicated)

Sub-MIC level
(fraction of MIC)

No. of genes with
differential results
(�2-fold, FDR
�0.05) for:

Expression Fitness

Gentamicin Antibiotic, aminoglycoside 0.003 1/2 214 758
Neomycin Antibiotic, aminoglycoside 0.0078 1/4 45 89
Tobramycin Antibiotic, aminoglycoside 0.0008 1/2 3 77
Polymyxin B Antibiotic, antimicrobial peptide 0.0016 1/2 59 2
Ampicillin Antibiotic, beta-lactam 0.3125 1/2 4 75
Aztreonam Antibiotic, beta-lactam 0.0039 1/2 0 19
Carbenicillin Antibiotic, beta-lactam 0.0391 1/2 9 4
Cefoperazone Antibiotic, beta-lactam 0.0031 1/2 24 389
Ciprofloxacin Antibiotic, quinolone 0.0002 1/2 8 66
Bleach Disinfectant, halogen releasing 1.25%a 1/2 88 10
Povidone-iodine Disinfectant, halogen releasing 5%a 1/2 43 0
Hydrogen peroxide Antiseptic/disinfectant, oxidizing 0.0047%a 1/2 99 2
Benzalkonium chloride Antiseptic/disinfectant, quaternary

ammonium
0.0153 1/4 15 0

Silver nitrate Antiseptic, heavy metal releasing 0.3125 1/2 73 8
a Bleach, H2O2, and PVPi stock solutions were 5.25%, 30%, and 10% (1% available iodine), respectively.
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FIG 1 Hierarchical clustering and heat map of RNA-seq data. Clustering of RNA-seq data generated in response to sub-MIC levels of 14 antimicrobials using
the Spearman rank correlation coefficient. The heat map was generated using genes that were differentially expressed by at least 2-fold under two or more
conditions. Downregulation of a gene is indicated in red, and upregulation is indicated in green. The antimicrobials used were gentamicin (GEN), neomycin
(NEO), tobramycin (TOB), carbenicillin (CAR), ampicillin (AMP), aztreonam (ATM), cefoperazone (CFP), ciprofloxacin (CIP), hydrogen peroxide (H2O2),
povidone-iodine (PVPi), polymyxin B (PMB), benzalkonium chloride (BZK), sodium hypochlorite (BLCH), and silver nitrate (AgNO3); aminoglycoside
antibiotics are in blue, beta-lactams in orange, and antiseptics and disinfectants are underlined. The yellow box denotes genes important for susceptibility of P.
aeruginosa to oxidative stress, and the blue box denotes general stress response genes.
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levels of the 14 antimicrobials. For these experiments, a trans-
poson mutant library containing ~300,000 P. aeruginosa PA14
mutants, each with a single transposon insertion, was constructed.
This number of mutants represents an insertion approximately
every 20 bp along the ~6.5-Mb P. aeruginosa genome. The trans-
poson mutant library was subjected to sub-MIC levels of each of
the 14 antimicrobials and allowed to grow for approximately 12
generations, and quantitative sequencing of genomic DNA adja-
cent to the transposon allowed the abundance of each insertion
mutant to be measured (19–21). By comparing mutant abun-
dance in the presence and absence of an antimicrobial, transposon
insertion sites that affect fitness in the presence of an antimicrobial
can be identified.

Most treatments (12 out of 14) resulted in the identification of
less than 100 fitness determinants (transposon mutant abundance
changes of �2-fold, with an FDR of �0.05) (Table 1; see also
Dataset S2 in the supplemental material). Gentamicin resulted in
the largest number of genes being identified, with ~13% of anno-
tated genes being important for fitness, while for benzalkonium
chloride and povidone-iodine, no fitness determinants with fold
changes of �2 were identified (Table 1; see also Dataset S2). Hi-
erarchical clustering analysis of the Tn-seq data revealed that, un-
like the results from RNA-seq, both the aminoglycosides and the
beta-lactams clustered by class (Fig. 2). As would be expected by
their mechanisms of action, aminoglycoside fitness determinants
consisted of heat shock genes that are important for coping with
misfolded proteins (8), and beta-lactam antibiotic fitness deter-
minants included cell wall biosynthetic genes (22). Unlike the an-
tibiotics, few mutations affected the fitness of P. aeruginosa in the
presence of the antiseptics and disinfectants, indicating that the
inactivation of single genetic elements has little effect on the in-
trinsic resistance of P. aeruginosa to these antimicrobials. Finally,
the inactivation of two genetic loci not previously linked to anti-
microbial resistance showed enhanced fitness upon exposure to
most antimicrobials (Fig. 2), indicating that P. aeruginosa can ac-
quire mutations in individual loci that render it more resistant to
multiple classes of antimicrobials. These two genetic elements are
presumed to be involved in amino acid biosynthesis, one being a
putative cysteinyl-tRNA synthetase and the other a putative argi-
nine tRNA (23).

Gene expression and fitness are not well correlated. The gen-
eration of RNA-seq and Tn-seq datasets for the same antimicro-
bial under identical growth conditions provides the opportunity
to determine whether expression data can be used to identify fit-
ness determinants. The null hypothesis is that gene expression and
mutant fitness are anticorrelated, because intuitively, we would
expect that genes that are upregulated in the presence of an anti-
microbial would be important for fitness when mutated. Thus, we
determined the level of correlation between gene expression and
mutant fitness across the P. aeruginosa genome for all antimicro-
bials tested. For this analysis, only nonessential genes were tested,
since essential genes cannot be studied with Tn-seq. Our results
revealed that the correlation between expression and fitness is
weak (Fig. 3A and B show results for a specific example and for all
antimicrobials, respectively), with the average correlation for all
14 antimicrobials being insignificant (�0.01). Confining our cor-
relation analysis to the genes that were induced most highly by
antimicrobial addition in the RNA-seq experiments (�8-fold) did
not result in a more significant correlation with mutant fitness
(0.02), indicating that even genes that are the most responsive to

antimicrobial addition are not enriched for fitness determinants.
These data are consistent with previous work from our group and
others showing weak correlation between expression and fitness
(24, 25); however our previous study revealed that for some func-
tionally related groups of genes, expression can be more predictive
of fitness determinants (25). To examine this possibility for anti-
microbials, we first tested whether fitness determinants for each
antimicrobial were enriched in functionally related subsets of
genes defined by the Pseudomonas aeruginosa Community Anno-
tation Project (PseudoCAP) (23) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (26). We then assessed whether the
fitness determinants within these enriched subsets showed differ-
ential regulation in RNA-seq data. Our results reveal that only
four antimicrobials showed enrichment of genes that were both
fitness determinants and differentially regulated within individual
PseudoCAP categories or KEGG pathways. For example, the data
for ciprofloxacin showed enrichment for genes involved in DNA
replication, recombination, modification, and repair, and 25% of
the genes differentially regulated in this category were fitness de-
terminants upon exposure to ciprofloxacin (Fig. 3C). Higher per-
centages were observed for other antimicrobial/gene category
combinations, including gentamicin and the category cell wall/
lipopolysaccharide (LPS)/capsule, in which 75% of differentially
regulated genes were fitness determinants (Fig. 3C). These data
indicate that, while the correlation between expression and fitness
across the P. aeruginosa genome is weak, differentially regulated
genes within particular PseudoCAP categories and KEGG path-
ways can be more predictive of fitness determinants.

Expression and fitness data can be used to determine the ge-
netic basis of antimicrobial antagonism. Due to the increasing
occurrence of antimicrobial-resistant infections, clinicians often
prescribe combinations of antibiotics (27). Most studies focus on
the effects of simultaneous antibiotic treatment; however, due to
differential rates of diffusion through host tissue, bacteria likely
encounter antibiotics individually and in succession (27, 28).
Therefore, we sought to predict the mechanistic basis of enhanced
resistance or susceptibility resulting from combinatorial antimi-
crobial treatment using our expression and fitness data. The ratio-
nale is that if exposure to an antimicrobial induces the transcrip-
tion of a fitness determinant for a second antimicrobial, then we
hypothesize that exposure to the first antimicrobial would en-
hance resistance to the second. As a test of this hypothesis, we
examined how exposure to sub-MIC polymyxin B affects resis-
tance to aminoglycosides and ciprofloxacin. Polymyxin B induces
the transcription of two genes, PA14_38410 (mexY orthologue)
and PA14_38395 (mexX orthologue), encoding components of a
tripartite efflux pump. The mexY gene is a fitness determinant for
gentamicin, neomycin, tobramycin, and ciprofloxacin, while
mexX is a fitness determinant for gentamicin and tobramycin.
Based on these data, we reasoned that exposure to sub-MIC poly-
myxin B would promote P. aeruginosa resistance to these antibi-
otics. To test this, P. aeruginosa was exposed to sub-MIC poly-
myxin B and subsequently tested for susceptibility to gentamicin,
neomycin, tobramycin, and ciprofloxacin. For these experiments,
a luminescent P. aeruginosa strain was used in which light produc-
tion serves as a proxy for antimicrobial susceptibility. Our results
reveal that preexposure to sub-MIC polymyxin B significantly in-
creases resistance to gentamicin, neomycin, tobramycin, and cip-
rofloxacin (Fig. 4) but, as predicted by the RNA-seq results, not
polymyxin B (see Fig. S1 in the supplemental material). To test
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FIG 2 Hierarchical clustering and heat map of Tn-seq data. Clustering of Tn-seq data generated in response to sub-MIC levels of 14 antimicrobials using
Spearman rank correlation coefficient. The heat map was generated using genes that showed at least 2-fold differential fitness under two or more conditions.
Fitness determinants are indicated in red, and beneficial mutations are indicated in green. Antimicrobial abbreviations are defined in the legend to Fig. 1;
aminoglycoside antibiotics are in blue, beta-lactams in orange, and antiseptics and disinfectants are underlined.
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whether the mechanism for this increased resistance was mediated
through mexXY, these genes were deleted and aminoglycoside/
ciprofloxacin resistance assessed following pretreatment with
polymyxin B. The results reveal that deletion of mexXY eliminates
the enhanced resistance to aminoglycosides and ciprofloxacin ob-
served upon exposure to sub-MIC polymyxin B (Fig. 4). To ensure
that pretreatment was required for enhanced resistance, wild-type
P. aeruginosa and the mexXY deletion mutant were treated simul-
taneously with polymyxin B and gentamicin (see Fig. S2). As ex-
pected, simultaneous treatment with polymyxin B did not lead to
increased resistance to aminoglycosides and ciprofloxacin. These
results demonstrate that whole-genome expression and fitness
data can be used to identify genes important for antimicrobial
cross-resistance.

DISCUSSION

The goal of this study was to identify determinants of bacterial
fitness in response to antimicrobials, using the model superbug
P. aeruginosa. Our highly controlled experimental parameters al-
lowed us to define a detailed transcriptome and fitness landscape
upon exposure to sub-MIC levels of antimicrobials. This is the
first paired gene expression and fitness analysis in any bacterium
in response to a large number of antimicrobials and provides a
valuable resource for the antimicrobial research community. The
clustering of the data for antimicrobials revealed that fitness pro-
files are a more accurate proxy for antimicrobial class than gene
expression profiles (Fig. 1 and 2), indicating that the use of bacte-
rial fitness data will likely better inform the classification of novel
antimicrobials. Our analysis demonstrated that, on the whole-
genome level, expression and fitness are not well correlated, indi-
cating that the use of expression data to identify antimicrobial
fitness determinants may not be the best strategy. However, we
discovered that for four antimicrobials, RNA-seq can be highly
predictive of fitness determinants (Fig. 3C), and thus, focusing on
these categories may be a viable alternative when Tn-seq experi-
ments are not possible. The lack of correlation between gene ex-
pression and fitness data may be due to a number of factors, one of
which is the potential that antimicrobials also serve as cues, elic-
iting responses not required to protect against them (29). Another
possible explanation is “adaptive prediction,” a process wherein a
bacterium is able to anticipate a future environment by expressing
genes not required for fitness in the first environment but required
in a second (30). In addition, because of the pooled nature of the
experiments, Tn-seq may also be affected by interactions between
individual mutants that result in community-based antimicrobial
resistance (31). Finally, one could argue that the differences in
length of antimicrobial exposure for RNA-seq (30 min) and
Tn-seq (7 to 12 h) may account for the lack of correlation. We do
not favor this hypothesis, since our RNA-seq data show significant
overlap with data from previous transcriptomic studies that used
different antimicrobial exposure times (albeit less than 12 h), in-
dicating that the duration of exposure does not alter the funda-FIG 3 Genome-wide P. aeruginosa gene expression and knockout fitness in

the presence of antimicrobials are not correlated. (a) Log2-transformed fold
change in gene expression (y axis) and abundance (x axis) of P. aeruginosa
strains with gene knockouts in AgNO3-treated cultures compared to the re-
sults for untreated cultures. Significant changes in gene expression (fold
change �2, FDR � 0.05) and mutant abundance (fold change �2, FDR of
�0.05) are colored as shown in the key (N.C., no change). (b) Spearman rank
correlation coefficients between gene expression and mutant abundance for all
antimicrobial treatments. (c) PseudoCAP categories and KEGG pathways in
which expression data were enriched for fitness determinants. Enrichment

(Continued)

Figure Legend Continued

analysis was performed with the one-tailed Fisher exact test (FDR was �0.05
except for ciprofloxacin, where FDR was 0.16). The percentages of differen-
tially regulated genes that are fitness determinants (far right column) were
determined by dividing the total number of fitness determinants that were
differentially expressed within each category by the total number of differen-
tially expressed genes within the category.

Murray et al.

6 ® mbio.asm.org November/December 2015 Volume 6 Issue 6 e01603-15

 
m

bio.asm
.org

 on N
ovem

ber 2, 2015 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


mental transcriptional response. Regardless, our results indicate
that the typical experimental designs used to study the transcrip-
tional responses to sub-MIC antimicrobials do not generally cap-
ture fitness determinants.

Our data also provide new insight into how bacteria respond to
and resist exposure to antibiotics and disinfectants/antiseptics.
While the data for disinfectants/antiseptics clustered by fitness
determinants (Fig. 2), there were remarkably few fitness determi-
nants for antiseptics/disinfectants compared to the number for
antibiotics, suggesting that P. aeruginosa possesses either multiple
or redundant mechanisms for antiseptic/disinfectant resistance or
lacks intrinsic resistance to these antimicrobials altogether. The
fact that fitness profiling identified mutations that have also been
observed in antimicrobial-resistant clinical isolates suggests that
these datasets may be used to predict P. aeruginosa mutations that
lead to increased antimicrobial resistance. Included among these
are transcriptional regulators controlling the beta-lactamase-
encoding gene ampC, multidrug efflux pumps, and porin proteins
that result in decreased cell permeability upon inactivation (2, 32).

Finally, these studies have the potential to provide insights into
resistance mechanisms that occur in individuals receiving multi-
ple antimicrobials. For example, our results (Fig. 4) expand on

previous studies showing that clinical strains of P. aeruginosa
overexpressing the efflux pump components MexXY in P. aerugi-
nosa PAO1 are more resistant to aminoglycosides/quinolones and
that transcription of mexXY is increased in the presence of anti-
microbial peptides (33). The ability to correlate transcriptional
regulation and fitness profiles for multiple antibiotics offers the
opportunity to develop specific hypotheses regarding the mecha-
nisms controlling drug-induced antibiotic resistance. Indeed,
while we formally tested the antagonistic interactions between
polymyxin B and aminoglycosides/ciprofloxacin (Fig. 4), several
additional interactions are predicted by the data (see Dataset S3 in
the supplemental material). Thus, these data provide a framework
to investigate the intrinsic resistance mechanisms of P. aeruginosa
and will likely inform similar studies of other bacteria that possess
orthologous genes.

MATERIALS AND METHODS
Bacterial strains and growth media. P. aeruginosa strain UCBPP-PA14
(34) was obtained from the MGH-Para-biosys:NHLBI Program for
Genomic Applications (http://pga.mgh.harvard.edu/cgi-bin/pa14/mu-
tants/retrieve.cgi). The luminescent P. aeruginosa UCBPP-PA14 strain
carrying pQF50-lux was used for pretreatment assays. pQF50-lux con-

FIG 4 Pretreatment with sub-MIC polymyxin B induces resistance to aminoglycosides and ciprofloxacin. Antimicrobials were applied to luminescent
P. aeruginosa, and luminescence was followed over time using a luminometer. Results at 60 min (a to c) and 180 min (d) post-antimicrobial treatment are shown.
Decreases in luminescence correlate with antimicrobial activity. Data are shown relative to the luminescence of a control in which fresh medium or sub-MIC
polymyxin (in the case of pretreatment assays) was added. The antimicrobials were tested with and without pretreatment with sub-MIC polymyxin B. *, P � 0.05
(n � 3 for gentamicin, neomycin, and tobramycin and n � 4 for ciprofloxacin) by the two-tailed Student t test. Error bars represent standard errors of the means.
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tains a 1,489-bp fragment (genomic location, positions 6323103 to
6324591 of the UCBPP-PA14 genome) from the P. aeruginosa genome
that provides a high level of expression of luxCDABE. Liquid cultures were
grown in chemically defined medium (CDM) supplemented with 20 mM
succinate (35) at 37°C with shaking at 250 rpm.

Construction and confirmation of deletion mutants. The PA14
�mexXY (PA14_38395-38410) deletion mutant was constructed by
amplifying ~700-bp fragments flanking these two genes by PCR with
Phusion hot start II DNA polymerase (Thermo Scientific, Waltham,
MA) to replace the coding sequence of the genes with the sequence
5=-GCGGCCGCC-3= flanked by the native start codon of PA14_38395
and stop codon of PA14_38410. The primers used for PCR were 5=-TTC
TGCAGGTCGACTCTAGACCAGGGTGCCGCAGATGC-3= and 5=-GC
ATCAGGCGGCCGCCATGGGTGTCCCTCGATTCGTG-3= for the up-
stream region and 5=-CCATGGCGGCCGCCTGATGCCCCTAGCGAAA
CTCTCGC-3= and 5=-GAATTCGAGCTCGAGCCCGGGCCCGGAAGT
TCTCCCTGGGC-3= for the downstream region. These two amplicons
and the suicide vector pEXG2 (36) were assembled using Gibson assembly
as described previously (37), transformed initially into Escherichia coli
DH5� �pir, and then transformed into E. coli SM10 �pir for conjugation
into strain PA14. This construct was introduced into PA14 by conjugation
with selection for gentamicin-resistant transconjugates, followed by selec-
tion on sucrose to obtain the chromosomal deletion. This mutation was
then verified by PCR.

MIC determination. For MIC determination, logarithmic P. aerugi-
nosa cells (optical density at 600 nm [OD600] of 0.5) were diluted to an OD
of 0.001 and added to a 96-well microtiter plate. Antimicrobials were
added, using serial 2-fold dilutions across the plate. The MIC was deter-
mined as the lowest concentration with no visible growth.

RNA-seq growth conditions. Cultures for RNA-seq analysis were
grown overnight in CDM, diluted to an OD600 of 0.03 in 10 ml CDM,
grown to an OD600 of 0.5, and then treated with 100-�l amounts of sub-
MIC concentrations of antimicrobials or with 100 �l water as a control.
Sub-MIC antibiotic levels were determined as the highest concentration at
which P. aeruginosa growth was not inhibited (either 1/2 or 1/4 MIC)
(Table 1). Cultures were grown for 30 min at 37°C with continuous shak-
ing at 250 rpm. After 30 min, the OD600 was between 0.7 and 1.0, and the
culture was immediately diluted with an equal volume of RNAlater.

Tn-seq growth conditions. Cultures for Tn-seq analysis were grown
as follows: frozen aliquots of the P. aeruginosa PA14 transposon insertion
library (38) were washed three times with 1 ml 20 mM MOPS (morpho-
linepropanesulfonic acid) buffered to pH 7.2, inoculated into 25 ml CDM
at 2.5 � 105 CFU/ml, and grown for 30 min at 37°C with shaking at
250 rpm. Then, 250-�l amounts of sub-MIC antimicrobials or water were
added and the culture was grown for approximately 12 generations (to
109 CFU/ml) and immediately placed on ice. Cells were pelleted, the su-
pernatant was discarded, and the pellet was frozen.

RNA-seq Illumina library preparation. Cultures stored in RNAlater
were pelleted, resuspended in RNA Bee, and transferred to 2-ml bead-
beating tubes containing 0.1-mm beads (MP Biomedical). Cells were
lysed by bead beating 3 times for 60 s, and the tubes placed on ice for 1 min
between each homogenization. Amounts of 200 �l of chloroform were
added, and the tubes were shaken vigorously for 30 s and incubated on ice
for 5 min. Samples were centrifuged for 15 min at 4°C to separate the
aqueous and organic phases. The top aqueous phase from each tube was
transferred to a new microcentrifuge tube to which 0.5 ml isopropanol
was added, and the tubes were incubated at room temperature for 10 min.
Amounts of 20 �g of linear acrylamide were added to the tubes, and the
samples were centrifuged at 12,000 � g for 5 min at 4°C. The pellets were
washed with 1 ml 75% ethanol, air dried for 10 min, and resuspended in
50 �l of RNase-free water. The RNA concentration for each sample was
determined with a NanoDrop spectrophotometer (Thermo Scientific).
DNA contamination was assessed with PCR amplification of the clpX
gene, and RNA integrity was verified with agarose gel electrophoresis of
glyoxylated samples (Ambion). Ribosomal RNA was depleted using the

RiboZero bacteria kit (Epicentre) and purified by ethanol precipitation
using 12.5 �g linear acrylamide to precipitate the RNA. The depleted RNA
was fragmented, and cDNA libraries were prepared as described previ-
ously (39). Libraries were sequenced at the Genome Sequencing and Anal-
ysis Facility at the University of Texas at Austin on an Illumina HiSeq 2000
using a 1 � 100-bp single-end run.

Tn-seq Illumina library preparation. The frozen pellets were resus-
pended in 1 ml 1� buffer A (40) with 0.1% SDS, homogenized in a bead-
beating tube for 1 min, and then placed on ice. Proteinase K (1 mg/ml) was
added, and the samples were incubated for 1 h. Samples were extracted
with equal volumes of 25:24:1 phenol-chloroform-isoamyl alcohol,
pH 8.0. DNA was ethanol precipitated (0.1 volume 3 M sodium acetate
and 3 volumes of 100% ethanol) from the aqueous phase, and the pellet
was washed with 75% ethanol 2 times, air dried for 10 min, and resus-
pended in 100 �l water. DNA concentrations for each sample were deter-
mined with a NanoDrop spectrophotometer (Thermo Scientific). DNA
was sheared to ~300 bp in a Q880R sonicator (Qsonica), and the size was
confirmed on an agarose gel. The sheared DNA was treated with terminal
deoxynucleotidyltransferase (TdT), followed by two PCRs as described
previously (38, 41). The libraries were sequenced at the Genome Sequenc-
ing and Analysis Facility at the University of Texas at Austin on an Illu-
mina HiSeq 2500 using a 1 � 100-bp single-end run.

RNA-seq bioinformatic analyses. After discarding reads with no call
(“N”) or low complexity (not containing all four nucleotides), we mapped
reads to the P. aeruginosa UCBPP-PA14 genome (GenBank accession
number NC_008463.1; downloaded from http://www.pseudomonas.com
on 31 July 2013) using the Burrows-Wheeler Aligner, Smith-Waterman
algorithm (BWA-SW) implemented on version 0.7.10 (42), and the best
nucleotide match for each read according to its mapping quality score was
selected. To remove ambiguous reads, we discarded the reads having mul-
tiple best hits with the same mapping quality score. Because our library
preparation method is designed to capture essentially all transcripts, in-
cluding small RNAs (sRNAs), the aligned length of the reads was highly
variable. Therefore, instead of read count, we counted the number of
nucleotides covering each gene (using the GFF3 annotation file obtained
from PseudoCAP [43]) and used the length of the gene and total number
of nucleotides mapped on genic regions of the genome as normalization
factors, analogous to transcripts per millions of reads (TPM) (44). We
identified genes showing significantly different RNA levels under each
condition using edgeR (45), with false discovery rates (FDRs) of less than
0.05 and differences of at least 2-fold. Detailed procedures and related
scripts are available at https://github.com/marcottelab/HTseq-toolbox/
wiki/ProkRNAseq.

Tn-seq bioinformatic analyses. As with the RNA-seq data, after dis-
carding reads with no call or low complexity, we mapped the Tn-seq reads
against the P. aeruginosa UCBPP-PA14 genome using BWA-SW and se-
lected the best nucleotide match for each read according to its mapping
quality score. We further filtered out mapped reads if their aligned length
was shorter than 10 bp (too short to infer the genomic DNA sequence
flanking the transposon). We then identified transposon insertion sites as
a junction of the transposon flanking sequence (TAAGAGTCA) and the
mapped genomic DNA sequence. For fitness analysis, the occurrence of all
transposon insertion sites within a gene was summed based on Pseudo-
CAP GFF3 annotation (43) and normalized by the total number of reads,
and genes showing significant fitness changes under each condition, with
FDRs of less than 0.05 and differences of at least 2-fold, were identified by
using edgeR. Detailed procedures and related scripts are available at
https://github.com/marcottelab/HTseq-toolbox/wiki/ProkTNseq.

Overlap between RNA-seq and existing gene expression data. Brazas
and Hancock reported microarray data from sub-MIC ciprofloxacin-
treated P. aeruginosa, and genes showing at least 2-fold differences in
expression and P values of less than 0.05 were compared to genes showing
at least 2-fold differences in expression and FDRs of less than 0.05 in the
RNA-seq data in this study (5). Chang et al. reported the 30 P. aeruginosa
genes that were most highly upregulated in response to hydrogen perox-
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ide, which were compared to genes showing at least 2-fold differences in
expression and FDRs of less than 0.05 in the RNA-seq data in this study
(7). The significance of overlaps in these data was assessed using the Fisher
exact test.

Heat map and cluster analyses. Heat maps were generated in R with
the function heatmap.2 of the gplots package. Clustering was performed
using genes exhibiting at least 2-fold differences in expression or fitness
and FDRs of less than 0.05 across at least 2 conditions using Spearman
correlation coefficients.

Enrichment analyses. Enrichment of differentially regulated genes
and differentially fit genes in a given PseudoCAP category or Kyoto En-
cyclopedia of Genes and Genomes (KEGG) (46) pathway was determined
by comparing the prevalence of genes with differences of at least 2-fold
and FDRs of less than 0.05 assigned to a specific PseudoCAP category or
KEGG pathway to the prevalence of genes in the genome assigned to that
PseudoCAP category or KEGG pathway using the one-tailed Fisher exact
test. Only annotated genes were used in the analysis. P values for enriched
categories were adjusted for multiple testing using a Benjamini-Hochberg
correction, giving the resulting false discovery rate/q values (47).

Pretreatment assay. PA14 and PA14 �mexXY, constitutively express-
ing luminescence from the plasmid pQF50-lux, were grown overnight in
CDM or Lysogeny Broth with carbenicillin (300 �g/ml), washed 3� with
fresh CDM containing no carbenicillin, diluted to an OD600 of 0.05 in
10 ml CDM, and grown to mid-logarithmic phase (OD600 of 0.5). The
cultures were then treated with 100 �l of subinhibitory (1/2 MIC) poly-
myxin B or with 100 �l water as a nontreatment control for 30 min.
Treated cells were added to 96-well microtiter plates, and antibiotics (gen-
tamicin, neomycin, tobramycin, or ciprofloxacin) were added, using se-
rial dilutions. Luminescence was monitored at 0, 5, 15, 30, 60, and
180 min using a Luminoskan Ascent microplate luminometer, and lumi-
nescence at 60 min (gentamicin, neomycin, and tobramycin) and 180 min
(ciprofloxacin) was reported. The internal temperature within the lumi-
nometer was maintained at 37°C, and the plates were shaken at 240 rpm;
prior to luminescence measurement, the plates were shaken at 1,200 rpm
for 10 s.

Microarray data accession numbers. RNA-seq and Tn-seq sequenc-
ing data are available at the National Center for Biotechnology Informa-
tion Sequence Read Archive (NCBI SRA) under accession number
SRP062243.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01603-15/-/DCSupplemental.
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Figure S2, JPG file, 0.6 MB.
Dataset S1, XLSX file, 2.8 MB.
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ACKNOWLEDGMENTS

This work was supported by a Burroughs Wellcome Investigator in the
Pathogenesis of Infectious Disease award to M.W. E.M.M. acknowledges
grants from the NIH, NSF, Army Research Office (W911NF-12-1-0390),
and Welch Foundation (F1515). T.K. was partially funded by the UNIST
2015 Research Fund (1.150043.01).

REFERENCES
1. D’Costa VM, McGrann KM, Hughes DW, Wright GD. 2006. Sampling

the antibiotic resistome. Science 311:374 –377. http://dx.doi.org/10.1126/
science.1120800.

2. Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. 2011. Pseu-
domonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:
419 – 426. http://dx.doi.org/10.1016/j.tim.2011.04.005.

3. Gellatly SL, Hancock REW. 2013. Pseudomonas aeruginosa: new insights
into pathogenesis and host defenses. Pathog Dis 67:159 –173. http://
dx.doi.org/10.1111/2049-632X.12033.

4. Rice L. 2008. Federal funding for the study of antimicrobial resistance in
nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079 –1081. http://
dx.doi.org/10.1086/533452.

5. Brazas MD, Hancock REW. 2005. Ciprofloxacin induction of a suscep-
tibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Che-
mother 49:3222–3227. http://dx.doi.org/10.1128/AAC.49.8.3222
-3227.2005.

6. Brazas MD, Hancock REW. 2005. Using microarray gene signatures to elu-
cidate mechanisms of antibiotic action and resistance. Drug Discov Today
10:1245–1252. http://dx.doi.org/10.1016/S1359-6446(05)03566-X.

7. Chang W, Small DA, Toghrol F, Bentley WE. 2005. Microarray analysis
of Pseudomonas aeruginosa reveals induction of pyocin genes in response
to hydrogen peroxide. BMC Genomics 6:115. http://dx.doi.org/10.1186/
1471-2164-6-115.

8. Kindrachuk KN, Fernandez L, Bains M, Hancock REW. 2011. In-
volvement of an ATP-dependent protease, PA0779/AsrA, in inducing
heat shock in response to tobramycin in Pseudomonas aeruginosa. An-
timicrob Agents Chemother 55:1874 –1882. http://dx.doi.org/10.1128/
AAC.00935-10.

9. Cirz RT, O’Neill BM, Hammond JA, Head SR, Romesberg FE. 2006.
Defining the Pseudomonas aeruginosa SOS response and its role in the
global response to the antibiotic ciprofloxacin. J Bacteriol 188:7101–7110.
http://dx.doi.org/10.1128/JB.00807-06.

10. Ezraty B, Henry C, Hérisse M, Denamur E, Barras F. 2014. Commercial
lysogeny broth culture media and oxidative stress: a cautious tale. Free
R a d i c B i o l M e d 7 4 : 2 4 5 – 2 5 1 . h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 /
j.freeradbiomed.2014.07.010.

11. Sezonov G, Joseleau-Petit D, D’Ari R. 2007. Escherichia coli physiology in
Luria-Bertani broth. J Bacteriol 189:8746 – 8749. http://dx.doi.org/
10.1128/JB.01368-07.

12. Fernandez L, Alvarez-Ortega C, Wiegand I, Olivares J, Kocincova D,
Lam JS, Martinez JL, Hancock REW. 2013. Characterization of the poly-
myxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Che-
mother 57:110 –119. http://dx.doi.org/10.1128/AAC.01583-12.

13. Breidenstein EBM, Khaira BK, Wiegand I, Overhage J, Hancock
REW. 2008. Complex ciprofloxacin resistome revealed by screening a
Pseudomonas aeruginosa mutant library for altered susceptibility. An-
timicrob Agents Chemother 52:4486 – 4491. http://dx.doi.org/10.1128/
AAC.00222-08.

14. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock REW, Martinez JL.
2010. Genetic determinants involved in the susceptibility of Pseudomonas
aeruginosa to beta-lactam antibiotics. Antimicrob Agents Chemother 54:
4159 – 4167. http://dx.doi.org/10.1128/AAC.00257-10.

15. Schurek KN, Marr AK, Taylor PK, Wiegand I, Semenec L, Khaira BK,
Hancock REW. 2008. Novel genetic determinants of low-level aminogly-
coside resistance in Pseudomonas aeruginosa. Antimicrob Agents Che-
mother 52:4213– 4219. http://dx.doi.org/10.1128/AAC.00507-08.

16. Brazas MD, Breidenstein EBM, Overhage J, Hancock REW. 2007. Role
of lon, an ATP-dependent protease homolog, in resistance of Pseudomo-
nas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 51:
4276 – 4283. http://dx.doi.org/10.1128/AAC.00830-07.

17. Marr AK, Overhage J, Bains M, Hancock REW. 2007. The Lon protease
of Pseudomonas aeruginosa is induced by aminoglycosides and is involved
in biofilm formation and motility. Microbiology 153:474 – 482. http://
dx.doi.org/10.1099/mic.0.2006/002519-0.

18. Häussler S, Becker T. 2008. The pseudomonas quinolone signal (PQS)
balances life and death in Pseudomonas aeruginosa populations. PLoS
Pathog 4:e1000166. http://dx.doi.org/10.1371/journal.ppat.1000166.

19. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA,
Knight R, Gordon JI. 2009. Identifying genetic determinants needed to
establish a human gut symbiont in its habitat. Cell Host Microbe
6:279 –289. http://dx.doi.org/10.1016/j.chom.2009.08.003.

20. Van Opijnen T, Bodi KL, Camilli A. 2009. Tn-seq: high-throughput
parallel sequencing for fitness and genetic interaction studies in microor-
ganisms. Nat Methods 6:767–772. http://dx.doi.org/10.1038/nmeth.1377.

21. Langridge GC, Phan M, Turner DJ, Perkins TT, Parts L, Haase J,
Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner
AK. 2009. Simultaneous assay of every Salmonella Typhi gene using one
million transposon mutants. Genome Res 19:2308 –2316. http://
dx.doi.org/10.1101/gr.097097.109.

22. Lambert PA. 2002. Mechanisms of antibiotic resistance in Pseudomonas
aeruginosa. J R Soc Med 95(Suppl 41):22–26.

23. Winsor GL, Lo R, Ho SSJ, Ung KS, Huang S, Cheng D, Ching WK,

P. aeruginosa Antibiotic Resistance Determinants

November/December 2015 Volume 6 Issue 6 e01603-15 ® mbio.asm.org 9

 
m

bio.asm
.org

 on N
ovem

ber 2, 2015 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.01603-15/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.01603-15/-/DCSupplemental
http://dx.doi.org/10.1126/science.1120800
http://dx.doi.org/10.1126/science.1120800
http://dx.doi.org/10.1016/j.tim.2011.04.005
http://dx.doi.org/10.1111/2049-632X.12033
http://dx.doi.org/10.1111/2049-632X.12033
http://dx.doi.org/10.1086/533452
http://dx.doi.org/10.1086/533452
http://dx.doi.org/10.1128/AAC.49.8.3222-3227.2005
http://dx.doi.org/10.1128/AAC.49.8.3222-3227.2005
http://dx.doi.org/10.1016/S1359-6446(05)03566-X
http://dx.doi.org/10.1186/1471-2164-6-115
http://dx.doi.org/10.1186/1471-2164-6-115
http://dx.doi.org/10.1128/AAC.00935-10
http://dx.doi.org/10.1128/AAC.00935-10
http://dx.doi.org/10.1128/JB.00807-06
http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.010
http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.010
http://dx.doi.org/10.1128/JB.01368-07
http://dx.doi.org/10.1128/JB.01368-07
http://dx.doi.org/10.1128/AAC.01583-12
http://dx.doi.org/10.1128/AAC.00222-08
http://dx.doi.org/10.1128/AAC.00222-08
http://dx.doi.org/10.1128/AAC.00257-10
http://dx.doi.org/10.1128/AAC.00507-08
http://dx.doi.org/10.1128/AAC.00830-07
http://dx.doi.org/10.1099/mic.0.2006/002519-0
http://dx.doi.org/10.1099/mic.0.2006/002519-0
http://dx.doi.org/10.1371/journal.ppat.1000166
http://dx.doi.org/10.1016/j.chom.2009.08.003
http://dx.doi.org/10.1038/nmeth.1377
http://dx.doi.org/10.1101/gr.097097.109
http://dx.doi.org/10.1101/gr.097097.109
mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


Hancock RE, Brinkman FS. 2004. Pseudomonas aeruginosa Genome Da-
tabase and PseudoCAP: facilitating community-based, continually up-
dated, genome annotation. Nucleic Acids Res 33:D338 –D343. http://
dx.doi.org/10.1093/nar/gki047.

24. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S,
Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El
Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss
M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel
DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S,
Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D,
Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo CY, Lussier M, Mao R,
Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald
P, Scherens B, Schimmack G, et al. 2002. Functional profiling of the
Saccharomyces cerevisiae genome. Nature 418:387–391. http://dx.doi.org/
10.1038/nature00935.

25. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M. 2014.
Requirements for Pseudomonas aeruginosa acute burn and chronic surgi-
cal wound infection. PLoS Genet 10:e1004518. http://dx.doi.org/10.1371/
journal.pgen.1004518.

26. Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res 28:27–30. http://dx.doi.org/10.1093/nar/
28.1.27.

27. Acar JF. 2000. Antibiotic synergy and antagonism. Med Clin North Am
84:1391–1406. http://dx.doi.org/10.1016/S0025-7125(05)70294-7.

28. Haaber J, Friberg C, McCreary M, Lin R, Cohen SN, Ingmer H. 2015.
Reversible antibiotic tolerance induced in Staphylococcus aureus by con-
current drug exposure. mBio 6(1):e02268-14. http://dx.doi.org/10.1128/
mBio.02268-14.

29. Yim G, Wang HH, Davies J. 2007. Antibiotics as signalling molecules.
Philos Trans R Soc Lond B Biol Sci 362:1195–1200. http://dx.doi.org/
10.1098/rstb.2007.2044.

30. Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M,
Dahan O, Pilpel Y. 2009. Adaptive prediction of environmental changes
by microorganisms. Nature 460:220 –224. http://dx.doi.org/10.1038/
nature08112.

31. West SA, Griffin AS, Gardner A, Diggle SP. 2006. Social evolution theory
for microorganisms. Nat Rev Microbiol 4:597– 607. http://dx.doi.org/
10.1038/nrmicro1461.

32. Livermore DM. 2002. Multiple mechanisms of antimicrobial resistance in
Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:
634 – 640. http://dx.doi.org/10.1086/338782.

33. Muller C, Plesiat P, Jeannot K. 2011. A two-component regulatory sys-
tem interconnects resistance to polymyxins, aminoglycosides, fluoro-
quinolones, and beta-lactams in Pseudomonas aeruginosa. Antimicrob
Agents Chemother 55:1211–1221. http://dx.doi.org/10.1128/AAC.01252
-10.

34. Rahme L, Stevens E, Wolfort S, Shao J, Tompkins R, Ausubel F. 1995.
Common virulence factors for bacterial pathogenicity in plants and ani-
mals. Science 268:1899 –1902. http://dx.doi.org/10.1126/science.7604262.

35. Brown SA, Whiteley M. 2007. A novel exclusion mechanism for carbon
resource partitioning in Aggregatibacter actinomycetemcomitans. J Bacte-
riol 189:6407– 6414. http://dx.doi.org/10.1128/JB.00554-07.

36. Rietsch A, Vallet-Gely I, Dove SL, Mekalanos JJ. 2005. ExsE, a secreted
regulator of type III secretion genes in Pseudomonas aeruginosa. Proc Natl
Acad Sci U S A 102:8006 – 8011. http://dx.doi.org/10.1073/
pnas.0503005102.

37. Gibson DG, Young L, Chuang R, Venter JC, Hutchison CA III, Smith
HO. 2009. Enzymatic assembly of DNA molecules up to several hundred
kilobases. Nat Methods 6:343–345. http://dx.doi.org/10.1038/
nmeth.1318.

38. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. 2015.
Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum.
Proc Natl Acad Sci U S A 112:4110 – 4115. http://dx.doi.org/10.1073/
pnas.1419677112.

39. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M.
2014. Metatranscriptomics of the human oral microbiome during health
and disease. mBio 5:e01012-14. http://dx.doi.org/10.1128/mBio.01012
-14.

40. Goodman AL, Wu M, Gordon JI. 2011. Identifying microbial fitness
determinants by insertion sequencing using genome-wide transposon
mutant libraries. Nat Protoc 6:1969 –1980. http://dx.doi.org/10.1038/
nprot.2011.417.

41. Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT.
2012. Identification of essential genes of the periodontal pathogen Por-
phyromonas gingivalis. BMC Genomics 13:578. http://dx.doi.org/
10.1186/1471-2164-13-578.

42. Li H, Durbin R. 2010. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics 26:589 –595. http://
dx.doi.org/10.1093/bioinformatics/btp698.

43. Winsor GL, Lam DKW, Fleming L, Lo R, Whiteside MD, Yu NY,
Hancock REW, Brinkman FSL. 2011. Pseudomonas Genome Database:
improved comparative analysis and population genomics capability for
Pseudomonas genomes. Nucleic Acids Res 39:D596 –D600. http://
dx.doi.org/10.1093/nar/gkq869.

44. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. 2003.
Microarray analysis of Pseudomonas aeruginosa quorum-sensing
regulons: effects of growth phase and environment. J Bacteriol 185:
2080 –2095. http://dx.doi.org/10.1128/JB.185.7.2080-2095.2003.

45. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26:139 –140. http://dx.doi.org/10.1093/bioinformatics/
btp616.

46. Kanehisa M, Goto S, Kawashima S, Nakaya A. 2002. The KEGG data-
bases at GenomeNet. Nucleic Acids Res 30:42– 46. http://dx.doi.org/
10.1093/nar/30.1.42.

47. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate—a
practical and powerful approach to multiple testing. J R Stat Soc B 57:
289 –300.

Murray et al.

10 ® mbio.asm.org November/December 2015 Volume 6 Issue 6 e01603-15

 
m

bio.asm
.org

 on N
ovem

ber 2, 2015 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://dx.doi.org/10.1093/nar/gki047
http://dx.doi.org/10.1093/nar/gki047
http://dx.doi.org/10.1038/nature00935
http://dx.doi.org/10.1038/nature00935
http://dx.doi.org/10.1371/journal.pgen.1004518
http://dx.doi.org/10.1371/journal.pgen.1004518
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1016/S0025-7125(05)70294-7
http://dx.doi.org/10.1128/mBio.02268-14
http://dx.doi.org/10.1128/mBio.02268-14
http://dx.doi.org/10.1098/rstb.2007.2044
http://dx.doi.org/10.1098/rstb.2007.2044
http://dx.doi.org/10.1038/nature08112
http://dx.doi.org/10.1038/nature08112
http://dx.doi.org/10.1038/nrmicro1461
http://dx.doi.org/10.1038/nrmicro1461
http://dx.doi.org/10.1086/338782
http://dx.doi.org/10.1128/AAC.01252-10
http://dx.doi.org/10.1128/AAC.01252-10
http://dx.doi.org/10.1126/science.7604262
http://dx.doi.org/10.1128/JB.00554-07
http://dx.doi.org/10.1073/pnas.0503005102
http://dx.doi.org/10.1073/pnas.0503005102
http://dx.doi.org/10.1038/nmeth.1318
http://dx.doi.org/10.1038/nmeth.1318
http://dx.doi.org/10.1073/pnas.1419677112
http://dx.doi.org/10.1073/pnas.1419677112
http://dx.doi.org/10.1128/mBio.01012-14
http://dx.doi.org/10.1128/mBio.01012-14
http://dx.doi.org/10.1038/nprot.2011.417
http://dx.doi.org/10.1038/nprot.2011.417
http://dx.doi.org/10.1186/1471-2164-13-578
http://dx.doi.org/10.1186/1471-2164-13-578
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/nar/gkq869
http://dx.doi.org/10.1093/nar/gkq869
http://dx.doi.org/10.1128/JB.185.7.2080-2095.2003
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/nar/30.1.42
http://dx.doi.org/10.1093/nar/30.1.42
mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/

	RESULTS
	Gene expression in response to sub-MIC antimicrobial levels. 
	Identification of fitness determinants in response to sub-MIC antimicrobial levels. 
	Gene expression and fitness are not well correlated. 
	Expression and fitness data can be used to determine the genetic basis of antimicrobial antagonism. 

	DISCUSSION
	MATERIALS AND METHODS
	Bacterial strains and growth media. 
	Construction and confirmation of deletion mutants. 
	MIC determination. 
	RNA-seq growth conditions. 
	Tn-seq growth conditions. 
	RNA-seq Illumina library preparation. 
	Tn-seq Illumina library preparation. 
	RNA-seq bioinformatic analyses. 
	Tn-seq bioinformatic analyses. 
	Overlap between RNA-seq and existing gene expression data. 
	Heat map and cluster analyses. 
	Enrichment analyses. 
	Pretreatment assay. 
	Microarray data accession numbers. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

