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Introduction
Stomach adenocarcinoma (STAD), the most common type 
of stomach cancer, is one of the major malignancies world-
wide, and generally affects older subjects (50–70 years). 
Although rarely occurring in the younger subjects,1,2 young 
subjects represent between 2 and 8% of all subjects with stom-
ach cancer.3,4 In spite of recent improvements in the medical 
screening techniques used in the diagnosis of multiple cancer 
types, stomach cancer in young people still remains a serious 

diagnostic challenge. The prognosis in young subjects has 
shown considerable variability, and clinicopathological fea-
tures of stomach cancer are reported to differ between young 
and old subjects.5,6 STAD is histologically classified into two 
categories based on Lauren’s criteria: the intestinal type and 
the diffuse type.7,8 The intestinal type of STAD arises from 
chronic atrophic gastritis and is associated with Helicobacter 
pylori infection. This type is common in Asia, particularly in 
Japan and Korea, and its incidence rate increases with age.9–11 
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The diffuse type often occurs in young subjects with a positive 
familial history and includes aggressive clinical forms, such as 
linitis plastica, that have poor prognosis.12

Recent studies have improved our understanding of the 
molecular mechanisms underlying tumorigenesis, prolifera-
tion, and progression in STAD.13–16 Several tyrosine kinase 
receptors, such as ERBB2, EGFR, FGFR2, and MET, have 
been shown to be activated in STAD tissues.17 Expression 
of c-Myc, which plays a role in the induction of cell prolif-
eration, is upregulated in STAD subjects.18 Furthermore, 
cytokine-induced inflammation plays an important role in the 
development of STAD, and it is well established that H. pylori 
infection induces gastric mucosal inflammatory responses, 
resulting in the upregulation of IL1β, which in turn promotes 
inflammation-associated carcinogenesis.19,20

With the recent advances in the field of biotechnology, 
a number of high-throughput studies have been conducted to 
determine the biological basis of STAD tumorigenesis.21–23 
However, to our knowledge, there are no reports that describe 
the genetic comparison of tumor tissues from young and old 
STAD subjects to identify genetic and epigenetic biomarkers. 
In this study, we analyzed gene and miRNA expressions, 
methylation changes derived from RNAseq and miRNAseq, 
and methylation chip data sets of the STAD samples to dis-
cover age-related signatures at transcriptomic and epigenomic 
levels. Our data were able to document significant age-related 
molecular signatures in STAD subjects. The significance of 
our study is that the gene alterations involving the cell cycle, 
the muscle system process, and cell adhesion were meaning-
fully distinguishable in young and old STAD subjects; fur-
thermore, these changes had not been previously identified as 
important molecules in aging and cancer processes.

Materials and Methods
STAD data collection. All data were retrieved from The 

Cancer Genome Atlas (TCGA). The TCGA is a comprehen-
sive and coordinated project to characterize the genomic data 
of about 25 different types of cancers by the National Cancer 
Institute (NCI), the National Human Genome Research 
Institute (NHGRI), and more than 24 participating institu-
tions. From the TCGA, we downloaded RNAseq (Illumina 
HiSeq), miRNAseq (Illumina HiSeq), and methylation 
chip (Infinium HumanMethylation450 BeadChip) data of 
184 samples from age-identified STAD subjects between 34 
and 90 years old (Supplementary Table  1). We divided the 
subject groups as old ($70) and young (#49). The samples in 
each age group used in this study are described in Table 1. The 
available number of samples of the stage and histological types 
of cancer were insufficient to allow analysis of genetic altera-
tion in young and old STAD subjects.

Identification of age-related mRNA and miRNA 
expression and DNA methylation. We used mRNA and 
miRNA expression data sets (TCGA level 3) processed by 
the Broad Institute’s TCGA workgroup. The RNAseq and Ta
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miRNAseq level 3 data comprise reads per kilobase per 
million mapped reads (RPKM), which is the numerical 
value of the gene expression generally used for RNAseq 
normalization.24 Using the EBSeq program of the R pac
kage, we computed age-related differentially expressed 
genes (DEGs) and miRNAs in the old and young groups.25 
Unsupervised two-dimensional hierarchical clustering was 
applied by using the MeV program.26 Owing to irregular 
variation in mRNA expression across cancer samples, hier-
archical clustering used median RPKM from binned groups, 
each bin covering samples in 10-year increments. Median 
RPKM data were normalized using the Normalize Genes/
Rows function of MeV software, and hierarchical cluster-
ing was performed using average linkage and Pearson cor-
relation. Significant differential expressions of mRNA and 
miRNAs were defined by an absolute fold change threshold 
of 1.5 and a posterior probability of differential expression 
(PPDE) threshold of 0.95. To identify age-related methyla-
tion differences, we used the Illumina Methylation Ana-
lyzer (IMA).27 Differentially methylated regions (DMRs) 
were identified as sites with the significantly different meth-
ylation levels (beta difference) between the young and old 
groups. The cutoff was defined at a beta difference of 0.14 
and a P-value of 0.05.

Gene set enrichment test and functional categorization 
of age-related genes in STAD. To characterize the biological 
pathways associated with the age-related STAD genes, DEGs 
were analyzed in the context of several databases such as Kyoto 
Encyclopedia of Genes and Genomes (KEGG; http://www.
genome.ad.jp) and BioCarta (http://www.biocarta.com) using 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID).28 The cutoff was defined at a P-value of 
0.05. Additionally, to elucidate the biological processes associ-
ated with age-related DEGs, we analyzed gene ontology (GO) 
terms associated with each age-related DEG using the DAVID 
database (P , 0.05). To identify the previously reported age-
related DEGs, we used AGEMAP, which is a public database 
categorizing changes in gene expression as a function of age in 
mice. The AGEMAP database includes expression changes for 
8,932 genes in 16 tissues as a function of age.29

Identification of age-related miRNA-target interac-
tions in STAD. To identify the target genes of the differ-
entially expressed miRNA, we merged two public miRNA 
databases, miRTarBase30 and miRecords.31 miRTarBase con-
tains the largest amount of validated miRNA-target interac-
tions, while miRecords includes predicted miRNA targets 
produced by 11 established miRNA-target prediction pro-
grams and validated miRNA-target interactions. Using the 
merged miRNA-target database, we identified age-related 
miRNA-target interactions.

Results
Detection of altered gene expression in young and old 

STAD subjects. We computed the age-related, genome-wide 

mRNA expression profiles for old (n = 70) and young subjects 
(n = 14) using EBSeq and identified 323 upregulated and 653 
downregulated genes whose expression levels were altered by 
1.5-fold or more (Supplementary Table 2). In order to see the 
overall age-related gene expression patterns in each STAD 
sample, we conducted unsupervised two-dimensional hierar-
chical clustering on mRNA expression data from the whole 
cohort (n = 184), using 976 mRNAs identified as differentially 
expressed between the young and old subjects. The hierarchical 
clustering showed clear patterns of age-related gene alteration 
in young (#49), intermediate (50–69), and old ($70) groups 
(Supplementary Fig.  1). Both cancer type and cancer stage 
are known to effect mRNA levels; therefore, we examined 
the distribution of mRNA expression differences for the 976 
DEGs identified according to the histological type of STAD 
(eg, diffuse, intestinal), the stage of STAD (eg, I, II, III),  
and the age group (eg, young and old). Figure 1 shows that the 
age-related DEGs have low impact in cancer progression and 
histological type.

Gene set enrichment analysis. To classify the DEGs 
using the DAVID database, we analyzed the predefined bio-
logical pathways of genes that showed significant differences 
in expression levels between young and old STAD subjects in 
the gene set enrichment analysis.32 Representative terms for 
biological pathways were used as defined in the KEGG (http://
www.genome.ad.jp) and BioCarta (http://www.biocarta.com) 
databases. In KEGG and BioCarta terminologies, the genes 
of five pathways were found to be upregulated, while the genes 
of 14 pathways were found to be downregulated (filtered at 
P , 0.05; Table 2). In the STAD samples belonging to the 
old subject group, several pathways, including the cell cycle, 
free radical-induced apoptosis, and mitotic spindle regula-
tion pathways, were found to be upregulated. Downregulated 
pathways included vascular smooth muscle contraction, cal-
cium signaling, neuroactive ligand–receptor interaction, focal 
adhesion, and cell adhesion pathways. GO analysis revealed 
that the upregulated genes were involved in cell cycle-related 
processes, while the downregulated genes were involved in 
the cell adhesion and the muscle system processes (Supple-
mentary Table 3). We selected 178 genes, which were assigned 
to the cell cycle, the muscle system, and cell adhesion, and 
conducted unsupervised two-dimensional hierarchical clus-
tering using samples from the whole cohort (n  =  184, aged 
34–90 years). Figure 2 shows clear differences in age-related  
gene alteration.

Identification of age-related miRNA expression and 
miRNA-target interactions. To identify age-related miRNA 
expression, we analyzed the miRNA expression profiles of 
samples from old (n = 75) and young subjects (n = 14) using 
EBSeq. We identified 8 upregulated and 22 downregulated 
miRNAs whose expression levels were altered by 1.5-fold 
or more (PPDE  $0.95) in the old group of STAD subjects 
(Supplementary Table 4). Next we used validated miRNA-target 
databases (miRTarBase and miRecords) to identify potential 
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Figure 1. Expression value distributions of DEGs in each cancer stage: (A) normal distribution of upregulated genes and (B) normal distribution of 
downregulated genes. Red line represents old tumor and green line represents young tumor.

miRNA-target interactions. We found 105 potential age-related 
miRNA-target interactions in STAD subjects. Among them, 
we identified several miRNA targets in DEGs (39 upregu-
lated and 4 downregulated genes), whose expression levels 
were inversely correlated with the levels of their target miRNA  
(2 upregulated and 6 downregulated miRNAs; Fig. 3).

Identification of age-related changes in methylation 
patterns. We compared the methylation levels (beta value) of 
STAD in young and old subjects and identified 3,630 age-
related DMRs using the IMA. Among them, 2,800 DMRs were 
hypomethylated and 830 DMRs were hypermethylated in the 
old group of STAD subjects. We separated the DMRs by their 
genetic regions (3′-UTR, 5′-UTR, exon1, gene body, TSS1500, 
and TSS200) and identified 2,652 differentially methylated 
genes (DMGs; 2,124 hypomethylated and 528 hypermethy-
lated; Supplementary Table  5). A comparison of the DMGs 
and DEGs revealed that 107 DEGs showed an inverse correla-
tion with DNA methylation in their genetic region in the old 
group. Upregulated genes (n = 54) were hypomethylated, while 
downregulated genes (n = 53) were hypermethylated (Supple-
mentary Table  6). We also identified 146 age-related DMRs 
in genome-wide miRNA regions (Supplementary Table  7). 
Three upregulated (hsa-miR-105–1, hsa-miR-512–1, and hsa-
miR-512–2) and two downregulated miRNAs (hsa-miR-124–2 
and hsa-miR-124–3) showed an inverse correlation with DNA 
methylation in the old group of STAD subjects.

Discussion
In order to explore the differences in the molecular basis of 
STAD progression between young and old STAD subjects, 
our analysis investigated high-throughput genetic and epige-
netic data. We identified age-related expression changes in 
genes and miRNAs and DMGs and revealed that significant 

gene alterations were involved in the cell cycle, the muscle 
system process, and cell adhesion in STAD subjects. Further-
more, by comparing DEGs, miRNA expressions, and DMGs, 
we detected genetic and epigenetic correlations in age-related 
gene alterations from STAD subjects.

To identify previously reported age-related DEGs, we 
examined the overlap between the DEGs we found in STAD 
subjects and those from previous research. When compar-
ing the AGEMAP database, which is an age-related gene 
database of mice, we detected that out of the 976 DEGs in 
old STAD subjects, 765 genes (79%, P , 2.6 × 10−14) were 
identified as novel genes associated with STAD aging. In 
addition, we compared our data with previous STAD stud-
ies that reported cancer-related DEGs in disease-free tissue 
and cancer tissue.33–35 Our analysis showed a variability of 
gene expression among public studies, including age-related 
DEGs (Supplementary Fig.  2). To find the gene alteration 
mediated by a histological type of cancer, we investigated a 
previous report that compared diffuse-type with intestinal-
type STAD.36–38 Among 976 DEGs, we found that 942 age-
related DEGs (P , 3.0 × 10−4) do not share histology-related 
DEGs (n =  1502) with STAD subjects. This finding indi-
cates that the gene alterations we identified are specifically 
affected in old STAD subjects, and thus may be good target 
molecules in identifying the correlation between young and 
old STAD subjects.

Our analysis detected that a significant number of genes 
(n = 35), which were assigned to the cell cycle (P , 8.1 × 10−8) 
of GO, were upregulated in old STAD subjects. In contrast, a 
number of genes involved in the muscle system process (n = 27, 
P , 4.0 × 10−11) and cell adhesion (n = 57, P , 4.8 × 10−10) 
were downregulated. Interestingly, in pathway analysis,  
a number of genes involved in vascular smooth muscle 
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Table 2. Genes in pathways significantly changed by the aging-related stomach cancer.

Condition Function category Gene members

Upregulated
Genes

KEGG Oocyte meiosis CCNB1, RPS6KA1, PLK1, BUB1, CHP2, PKMYT1, CDC20,  
ESPL1, AURKA

Cell cycle CCNB1, CDC6, PLK1, BUB1, BUB1B, PKMYT1, CDC20,  
ESPL1, CCNA2

Progesterone-mediated oocyte  
maturation

CCNB1, RPS6KA1, PLK1, BUB1, PKMYT1, CCNA2

BioCarta Free radical Induced apoptosis XDH, IL8, NOX1

Role of ran in mitotic spindle  
regulation

AURKA, RCC1, KPNA2

Downregulated Genes KEGG Vascular smooth muscle  
contraction

KCNMA1, ACTA2, ADCY5, CALD1, MRVI1, NPR2, PRKG1,  
KCNMB1, PRKCB, MYL9, EDNRA, AGTR1, ACTG2, GNAQ,  
MYH11, GUCY1A3, GUCY1B3, PRKACB, PPP1R14A, MYLK

Dilated cardiomyopathy CACNA2D1, ADCY5, TGFB3, IGF1, CACNB2, TPM2, CACNA2D2,  
ITGA9, DES, ITGA5, PLN, DMD, ITGA7, SGCD, PRKACB, SGCA

Calcium signaling pathway CCKAR, PTGER3, SLC8A2, TACR2, ITPKB, PRKCB, EDNRA,  
AGTR1, ADRB2, ATP2B4, GNAQ, CHRM2, PDE1C, PLN, GRPR,  
CACNA1H, CAMK2B, PRKACB, HTR2B, MYLK

Arrhythmogenic right ventricular  
cardiomyopathy (ARVC)

CACNA2D1, ACTN1, GJA1, CACNB2, ACTN2, CACNA2D2,  
ITGA9, DES, ITGA5, DMD, ITGA7, SGCD, SGCA

Hypertrophic cardiomyopathy  
(HCM)

CACNA2D1, TGFB3, IGF1, CACNB2, TPM2, CACNA2D2,  
ITGA9, DES, ITGA5, DMD, ITGA7, SGCD, SGCA

Neuroactive ligand-receptor  
interaction

CCKAR, PTGER3, PRLHR, TACR2, NPBWR1, LEPR, NR3C1,  
VIPR2, EDNRA, AGTR1, S1PR3, AGTR2, ADRB2, HRH3,  
CHRM2, CNR1, F2, GRPR, HTR2B, GRID1

Focal adhesion CAV1, ACTN1, IGF1, ACTN2, FLNC, FLNA, PRKCB, MYL9,  
ITGA9, COL6A6, ITGA5, ITGA7, TNN, COL11A2, MYLK, THBS4

Long-term depression GNAZ, GNAO1, GNAQ, GUCY1A3, IGF1, GUCY1B3, PRKG1,  
PRKCB

Gap junction GNAQ, ADCY5, GUCY1A3, GJA1, GUCY1B3, PRKACB, PRKG1,  
HTR2B, PRKCB

Cell adhesion molecules (CAMs) SELP, ITGA9, CADM3, PTPRM, NRXN2, NRXN3, NFASC,  
CNTNAP1, MADCAM1, JAM2, NEGR1

ECM-receptor interaction ITGA9, CD36, COL6A6, ITGA5, ITGA7, TNN, COL11A2, THBS4

Aldosterone-regulated sodium  
reabsorption

IGF1, ATP1A2, SCNN1G, SCNN1B, PRKCB

BioCarta Bioactive peptide induced  
signaling pathway

AGTR2, MAPT, F2, MYLK, PRKCB

Angiotensin-converting enzyme 2  
regulates heart function

AGTR1, AGTR2, CMA1

 

contraction (P , 1.3 × 10−8) and heart muscle disease (dilated 
cardiomyopathy: P , 1.8 × 10−7, arrhythmogenic right ven-
tricular cardiomyopathy: P , 4.7 × 10−6, and hypertrophic 
cardiomyopathy (HCM): P , 1.5 × 10−5) were downregu-
lated in old STAD subjects as assigned by the KEGG data-
base. We mentioned that muscle-related gene alteration 
may be a reason for the aged stomach tissue or histological 
characteristics of cancer. In physiological aging process, the 
progressive loss of an organ’s ability to function is a general 
feature of the aging process because of an inefficient cellular 
repair system. Furthermore, it is well known that the pre-
cise control of somatic stem cell proliferation ensures main-
tenance of tissue homeostasis in damaged tissue intestinal 
stem cells.39 In terms of tissue homeostasis, upregulation of 

genes involved in cell proliferation can also be described as 
being the cause of reduced gastric motility function. Alter-
natively, the observed downregulation in muscle-related 
genes may be related to the greater proportion of diffuse-
type STAD in the young group, rather than age-related dif-
ferences per se. Owing to insufficient histologically diverse 
STAD samples in some age ranges, we could not analyze 
RNAseq data based on histological STAD type. In addition, 
we detected the upregulation of inflammation-related genes 
(n = 16, P , 6.2 × 10−3) in old STAD subjects. Furthermore, 
XDH and NOX1 genes, which are involved in the production 
of reactive oxygen species (ROS),40 and IL8, which can be 
activated by ROS,41 were also found to be upregulated in old 
STAD subjects. It is well known that chronic inflammation 
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plays a key role in oxidative stress-induced aging. Inflamma-
tory processes, activated by ROS, result in a chronic inflam-
matory condition during aging, as predicted by molecular 
inflammation.42–44

A recent study suggests that DNA hypomethylation of 
genes increases with age.45 Consistent with this observation, 
our studies also revealed a large number of age-related changes 
in DNA hypomethylation patterns. Figure  4  shows DNA 
methylation changes between young and old STAD subjects. 
We calculated the distribution of absolute beta value difference 
and found that old STAD subjects had a lower DNA methy-
lation content in gene regions (Fig. 4A) and miRNA regions 
(Fig. 4B) compared to young STAD subjects. Approximately 
80% of the DMGs in tissues from the old STAD subjects 
were hypomethylated. Interestingly, a comparison between 
DMGs and DEGs revealed that 54 upregulated genes (17%) 
were hypomethylated (P , 4.6 × 10−9, Fisher’s exact t-test), 
whereas 53 downregulated genes (8%) were hypermethylated 
(P , 2.2 × 10−16, Fisher’s exact t-test) in old STAD subjects. 
Notably, AZU1, ELF3, NOX1, IL1B, and S100A12, which 
are associated with inflammatory responses, were found to be 
upregulated and hypomethylated in old STAD subjects.

In our miRNA analysis, we identified several significantly 
changed miRNA in old STAD subjects. hsa-mir-124–1 (84-
fold), hsa-mir-124–2 (80-fold), and hsa-mir-124–3 (76-fold) 
were significantly downregulated in old STAD subjects. 
mir-124 is already a well-known tumor-suppressive miRNA, 
and downregulation of mir-124 was previously reported in 
various cancer types, such as colon, lung, and central nervous 
system.46–48 Furthermore, the loss of mir-124 in Caenorhabditis 
elegans is known to accelerate the aging process, resulting in 
an increase in ROS.49 On the other hand, mir-302a (140-
fold) and mir-105c (106-fold) were greatly upregulated in 
old STAD subjects. It is known that mir-105 has a different 
action at different phases of the cell cycle, such as affecting 
the increase of PCNA, which suppresses cyclin D1 during 
the cell cycle process in the S-phase and decreases cyclin 
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Figure 2. Hierarchical clustering analysis of 178 genes assigned by the 
cell cycle, the muscle system, and cell adhesion in GO terminologies. 
Rows represent genes, and columns represent age groups, which 
grouped age at every 10 years. Red and green blocks, respectively, 
represent high and low median RPKM values relative to each age group, 
while black blocks indicate midpoint values. Magenta blocks represent 
genes assigned to the cell cycle in GO terms; blue blocks represent cell 
adhesion; and cyan blocks represent the muscle system in GO terms.

Figure 3. Age-related miRNA-target interactions: (A) downregulated miRNAs and upregulated miRNA targets and (B) upregulated miRNAs and 
downregulated miRNA targets. Red circle represents upregulated gene or miRNA, and green circle represents downregulated genes or miRNA.
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B1 in the G2-phase,50 and this miRNA can inhibit prostate 
cancer growth by suppressing CDK6 in the G1-phase.51 Fur-
thermore, miR-302a is known to promote an increase in the 
S-phase activity and a decrease in the G1-phase activity by 
targeting cyclin D1 in the human embryonic stem cell.52 The 
majority of the upregulated cell cycle genes in the present 
study were related to the M-phase rather than other phases 
in the cell cycle process, and may be regulated by miRNA 
expression.

Importantly, through integrated analysis of DEGs, 
DMRs, miRNA expression, and miRNA-target inter-
actions, we identif ied significant age-related genes, 
such as ELF3, IL1β, and MMP13, which were upregu-
lated (Supplementary Fig.  3) and hypomethylated in the 
promoter region but inversely correlated with miRNA 
expression in the old STAD subjects (hsa-mir-124–3, hsa-
mir-204, and hsa-mir-125b-2). Notably, these data also 
show that hsa-mir-124–3, the putative interacting partner 
of ELF3, was downregulated and hypermethylated within 
the TSS1500 regions in old STAD subjects. ELF3 is an 
epithelial specif ic transcription factor and plays an impor-
tant role in epithelial cell differentiation and tumorigen-
esis.53 ELF3 can directly bind to the MMP13 promoter; 
its expression is enhanced by IL1β stimulation in chon-
drocytes under proinf lammatory stress.54 These results 
show that these genetic and epigenetic alterations may be 
specif ically associated with old STAD subjects and can be 
affected in STAD processing.

Conclusion
In summary, our study provides the first comprehensive 
genetic and epigenetic analysis of STAD through the exami-
nation of the DEGs, DMGs, and miRNAs that are known to 
characterize the underlying age-related biological differences 
in STAD tumorigenesis. Although the present study was 
unable to secure sufficient data from young and old STAD 
subjects to perform a comparative analysis of tumor tissues, it 
provides valuable data at molecular levels on the cell cycle and 

muscle system-related gene alterations that can be important 
distinguishing factors in age-related STAD. Furthermore, our 
results indicate that three genes (ELF3, IL1β, and MMP13) 
are correlated in the STAD aging process, and therefore may 
play a significant role in age-related STAD. Our studies pro-
vide insights into the mechanisms of age-related STAD pro-
gression and may help identify potential biomarkers in STAD 
subjects.
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Figure 4. DNA methylation changes between young and old STAD subjects: (A) DNA methylation change in gene regions and (B) DNA methylation 
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