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Versatile control of metal-assisted 
chemical etching for vertical 
silicon microwire arrays and their 
photovoltaic applications
Han-Don Um1, Namwoo Kim1, Kangmin Lee1, Inchan Hwang1, Ji Hoon Seo1, Young J. Yu2, 
Peter Duane2, Munib Wober2 & Kwanyong Seo1

A systematic study was conducted into the use of metal-assisted chemical etching (MacEtch) to 
fabricate vertical Si microwire arrays, with several models being studied for the efficient redox 
reaction of reactants with silicon through a metal catalyst by varying such parameters as the 
thickness and morphology of the metal film. By optimizing the MacEtch conditions, high-quality 
vertical Si microwires were successfully fabricated with lengths of up to 23.2 μm, which, when applied 
in a solar cell, achieved a conversion efficiency of up to 13.0%. These solar cells also exhibited an 
open-circuit voltage of 547.7 mV, a short-circuit current density of 33.2 mA/cm2, and a fill factor of 
71.3% by virtue of the enhanced light absorption and effective carrier collection provided by the Si 
microwires. The use of MacEtch to fabricate high-quality Si microwires therefore presents a unique 
opportunity to develop cost-effective and highly efficient solar cells.

Vertically aligned silicon microwire (MW) arrays have been extensively investigated as a potential means 
for developing highly efficient and low cost solar cells1–15, as a silicon surface patterned with MW arrays 
can provide broadband antireflection and enhanced light trapping efficiency3,10–13,15. Among the many 
methods developed for the fabrication of Si MW arrays, deep reactive ion etching (DRIE) has proven 
to provide a satisfactory anisotropic etch profile with a high aspect ratio4,10–12,15,16; however, it also pro-
duces a rough surface with scallops along the sidewalls of the Si MWs due to its reliance on alternating 
steps of etching (SF6) and passivation (C4F8)15,17–19. In addition, plasma-induced surface damage extend-
ing from the surface to a depth of up to ~1 μ m can reduce the lifetime of minority carriers20–22, with 
Chen et al. reporting that RIE-induced surface damage leads to a recombination loss that can degrade 
short-wavelength response and reduce the open-circuit voltage (Voc). This means that in order to achieve 
high-efficiency solar cells, the damaged surface must be removed by additional treatment23.

As an alternative approach for fabricating Si MW arrays, metal-assisted chemical etching (MacEtch) 
has attracted great interest because of its simplicity, low fabrication costs, and ability to generate high 
aspect ratio nanostructures such as nanowires (NWs) and nanoholes24–32. Furthermore, as MacEtch is 
based on a simple redox process in an etching solution, it produces a very smooth and clean Si surface 
that is free of the surface damage that typically results when using the RIE process. The anisotropic etch 
profile of the MacEtch process has also made it possible to achieve vertically-aligned Si NW arrays with 
aspect ratios as high as 220 over large areas33. Ordered Si NW arrays have also been successfully fabri-
cated by combining MacEtch and nano-lithography techniques in processes such as interference lithogra-
phy34,35 and nanosphere lithography33,36, but as yet MacEtch has not been directly used for the fabrication 
of Si MWs with micrometer spacing. Furthermore, although attempts have been made to use MacEtch 
to fabricate Si microstructures with a high aspect ratio37–40, there are still a number of unresolved issues 
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preventing optimal structures being achieved such as undesired etching, a low etch rate, and surface 
non-uniformity. Problems can also be encountered as a result of undesired nanostructures being created 
from voids or fractures in the metal film used as a catalyst38,40. This means that a MW solar cell with a 
greater light trapping efficiency than a planar solar cell may still have a lower power conversion efficiency 
(PCE)7 due to the surface non-uniformity created by a non-optimized MacEtch process.

In this paper, we take a systematic look at the mechanism of the MacEtch process in relation to the 
fabrication of high-quality vertical Si MW arrays. Two mechanism models for efficient redox reaction 
through a Au catalyst are suggested, with the effect of each model being investigated by controlling the 
deposition rate and thickness of the catalyst. It is found that the Au film needs to have a thickness of 30 
to 40 nm and a fast deposition rate (≥ 3 Å/s) if high-quality vertically aligned Si MWs are to be obtained 
without surface damage (i.e., a high etch rate is needed), and so optimization of the Au catalyst structure 
was used to increase the length of the high-quality Si MWs obtained. These MWs were subsequently used 
for the fabrication of photovoltaic devices, the performance of which is herein discussed.

Results
Possible MacEtch mechanisms for the formation of microscale structures.  The MacEtch pro-
cess consists of two steps. First, nanoparticles or a film of Ag, Au, Pt, Pd, etc. is deposited on a target 
substrate to provide a catalyst, with films typically being patterned to form an array of holes, wires, or 
other nano-scale features. Next, the metal-coated substrate is immersed in an etching solution composed 
of HF and a suitable oxidant such as H2O2. Chemical reduction of the oxidant on the surface of the metal 
catalyst generates electrical holes (h+), as represented by Eq. (1), which subsequently leads to dissolution 
of the Si surrounding the catalyst by HF, as in Eq. (2)41,42:

+ → + ( )+ +hH O 2H 2H O 2 12 2 2

+ + → + ( )+ − +hSi 4 6HF SiF 6H 26
2

The effectiveness of MacEtch lies in the fact that these redox processes can be selectively localized 
to only the Si that is directly underneath the metal catalyst. Moreover, as the metal catalyst moves and 
penetrates into the space formed by the etched Si, the etched structure is ultimately defined by the shape 
of the catalyst (i.e., the particles or patterned film). Creating Si NWs requires a metal catalyst with a 
particle-linked structure43, and using a nanoparticle diameter of less than ~100 nm ensures that the nano-
scale distance (half the nanoparticle diameter) is sufficient to allow fluent diffusion of the etchant and 
dissolved Si (Eq. (2)) along the Au/Si interface. Under such conditions, which are illustrated in Fig. 1a, 
the redox reaction of MacEtch occurs immediately at the Au/Si interface in contact with the etchant. If, 
on the other hand, a micrometer-scale Si structure is to be created by MacEtch, then a continuous Au 
film is needed rather than Au nanoparticles. In the case of the continuous Au film shown in Fig. 1b, the 
catalytic reaction of MacEtch is expected to follow a very different mechanism to that of a particle-linked 
catalyst. For instance, the etching solution is no longer able to diffuse beneath or penetrate into the 
continuous film, and for this reason the mechanism of the redox reactions needs to be reconsidered and 
systematically investigated for the etching of vertical Si MWs.

We suggest two possible models for the diffusion of reactants and reaction products during the 
MacEtch of Si MWs, both of which are illustrated in Fig. 1b. In Model 1, reactants (HF and H2O2) ini-
tially diffuse into the metal/Si interface, with the subsequent diffusion of reaction products (e.g., H2SiF6 
and H2 gas) taking place in a thin channel formed at the metal/Si interface. In contrast, diffusion in 
Model 2 occurs via small pores in the metal film leading to the metal/Si interface, which is where the Si 
atoms are oxidized and etched away. A series of methodical experiments were performed as part of this 
study to elucidate which of these models is the more dominant in micrometer scale MacEtching, and 
based on the results, we propose a new combined mechanism and optimized process parameters for the 
formation of vertical Si MWs with high aspect ratio by MacEtch.

Effect of metal catalyst thickness and spacing.  Differences between Model 1 and 2 in terms of 
their change in etching rate as a function of the metal catalyst thickness and spacing (i.e., the distance 
between MWs) can be attributed to the diffusion distance (Ddiff) of the reactants (HF and H2O2) and 
reaction products (H2SiF6 and H2 gas). That is, in Model 1 Ddiff is largely dependent on the spacing, 
whereas in Model 2 it is governed by the porosity of the metal film. To test the notion that the etch rate 
should not be effected by film thickness if Model 1 is dominant, metal films with different thicknesses 
were deposited on Si substrates using the same photoresist pattern (2 μ m in diameter and 2 μ m spacing). 
The SEM images in Fig. 2 show the wires that were etched using Au film thicknesses (tAu) of 15 to 70 nm; 
a tAu of less than 10 nm found to result in random and disordered etching of the Si (see supplementary 
Fig. S1a). All samples were immersed in an etching solution containing 10 M HF and 0.3 M H2O2 for 
60 min, but in order to more clearly determine the etch rate, the photoresist dots on the tips of each 
MW were not removed prior to MacEtching. As shown in Fig. 2a, the etched structures appear to evolve 
from pores or wall-like structures into wires with a diameter in the range of 50–200 nm with increas-
ing tAu (15 nm <  tAu <  20 nm), which can be explained by the fact that very thin Au films (tAu <  30 nm) 
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consist of isolated nanoparticle structures with wide gaps and weak interconnections between them (see 
supplementary Fig. S1b). The use of a thick Au film (30 nm ≤  tAu <  50 nm), on the other hand, results 
in the ordered MWs seen in Fig.  2b,c. Thus, with increasing tAu, the deposited nanoparticles tend to 
form interconnected networks that shrink the interspace between them, causing them to cover almost 
the entire surface of the substrate. However, when the thickness reaches 50 nm or more (Fig. 2d), nei-
ther Si NWs nor MWs are formed. The variation in etch rate with Au film thickness shown in Fig. 2e 
interestingly reveals that the etch rate of a 40 nm-thick Au film (118 nm/min) is much the same as that 
of a 30 nm-thick Au film (113 nm/min), despite the fact that the increase in thickness coincides with a 
decrease in pore density. This therefore provides at least indirect evidence that Model 1 is the dominant 
mechanism.

The reliability of Model 1 was investigated by depositing metal films of the same thickness, but with 
different spacing, onto Si substrates. That is, since Ddiff depends only on the spacing according to Model 1,  
the etch rate should decrease with increased spacing. Identical MacEtch conditions were used with Si 
MW spacings of 2 μ m and 5 μ m, with the SEM images shown in supplementary Fig. S2 confirming that 
the etch rate did indeed vary in relation to the spacing. Specifically, the etch rate with a 2 μ m spacing 
(136 ±  15 nm/min) was notably higher than that with a 5 μ m spacing (94 ±  30 nm/min). In addition, the 
etch rate at the centre of the 5 μ m gap was comparatively slower than that at the edge of the Au film (the 
Au/photoresist interface), which caused the Au film to bend (see Fig. S2c). This non-uniformity in etch 
rate can be attributed mainly to the long Ddiff that the etchant needs to travel in order to pass beneath 
the Au film, and means that the etch rate decreases with increasing spacing of the Au film; a conclusion 
that supports the notion that chemical diffusion is ruled by Model 1.

Reaction kinetics of MacEtch for Si MWs.  If the etching rate of Si MWs is indeed determined 
by the distance of chemical diffusion along the thin channel between the metal catalyst and Si surface, 
then the etching kinetics are clearly different from those of Si NWs in which the redox reaction occurs 
as soon as the Au nanoparticle/Si interface makes contact with the etchant. To better understand the 
etching reaction kinetics of Si MWs, the temperature dependence of the etch rate was investigated by 
means of Arrhenius plots of ln(R) =  ln(A) −  Ea/(kBT), where R is the etch rate, A the pre-exponential 

Figure 1.  Mechanism models for the redox reactions between Si and reactants in solution though a 
metal catalyst during MacEtch. (a) Formation of Si nanowires: the diffusion of reactants and reaction 
products occurs through gold nanoparticles. (b) Formation of Si microwires: Model 1, in which diffusion 
takes place in a thin channel formed at the metal/Si interface and Model 2, in which diffusion occurs 
through small pores in the metal film to the metal/Si interface.
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(frequency) factor, Ea the activation energy required for etching, and kB the Boltzmann constant. Based 
on this analysis, the average activation energy for the Si MWs was found to be much smaller than that of 
Si NWs, with Ea

MW =  0.15 ±  0.05 eV and Ea
NW =  0.36 ±  0.01 eV when an etching time of 5 min was used 

(Fig. 3). The activation energy for the Si NWs is similar to previously reported values44,45, and so clearly 
the overall rate of MacEtching is determined by the interplay between the two competing events: chem-
ical diffusion along the Au/Si interface, and the Au-catalyzed redox reaction between the Si and etching 
solution. Given that the etching rate of the Si NWs is determined by a redox reaction with a relatively 
short Ddiff (i.e., less than the diameter of the Au nanoparticles), the activation energy for etching corre-
sponds to the energy barrier for displacing a Si atom44. In contrast, the long chemical diffusion through a 
very thin channel between the Au film and Si in the MacEtching of Si MWs only provides a very limited 
amount of the reactant required for redox. In other words, the etching rate of Si MWs is determined by 
the migration of reactants through the electrolyte and their interaction46–48, not the kinetics of the redox 
reaction. Consequently, the activation energy should approximate that required for chemical diffusion49, 
and this is lower than that required for surface-controlled reactions50.

The etch rate and activation energy was further investigated by increasing the etching time up to 
30 and 60 min, as shown in Fig. 3. It is evident from this that while the activation energy for Si MWs 
increases from 0.16 ±  0.07 to 0.34 ±  0.04 eV at an elevated temperature (≥30 °C), it remains constant at 
0.36 ±  0.03 eV in the case of Si NWs. During the rapid etching of Si MWs at elevated temperature, the 
continuous metal film should readily form a discontinuous film and individual nanoparticles due to the 
non-uniform etching rate over its surface (see supplementary Fig. S3). These isolated particles should, in 
turn, increase the rate at which the Si NWs between the Si MWs are etched, as the short Ddiff means that 

Figure 2.  SEM images of microwires etched from a substrate with a (a) 15, (b) 30, (c) 40, and (d) 50 nm-
thick Au film. (e) Variation in etching rate as a function of Au film thickness. The well-aligned vertical 
microwires were obtained using an Au film with a thickness of 30 to 50 nm.



www.nature.com/scientificreports/

5Scientific Reports | 5:11277 | DOI: 10.1038/srep11277

the etching rate is determined by the redox reaction of the Si NWs. The average activation energy for 
the randomly-etched MWs at elevated temperature (0.35 ±  0.03 eV) turned out to be similar to that for 
vertical Si NWs (0.36 ±  0.01 eV), indicating that the etching mechanism of the randomly-etched MWs 
is indeed similar to that of Si NWs due to the short Ddiff.

In the case of Si MWs with a high aspect ratio, the etching time should increase without changing 
the morphology of the metal film. Figure 4 shows SEM images obtained of Si MWs etched for various 
times ranging from 30 to 90 min, from which we see that during the initial stage of the MacEtch process 
(≤20 min), the continuous Au film produces vertical Si MW arrays at an etch rate of ~130 nm/min. With 
increasing time, however, the continuous Au film is likely to crack due to non-uniform etch rate between 
the edge and centre of the film, even if MacEtching is conducted at room temperature. These discontinu-
ous and cracked films tend to have small pores, which lead to the undesired formation of NWs between 
the Si MWs (Fig.  4a,b). With etching times longer than 60 min, a discontinuous Au film is produced 
that results in randomly etched structures at the bottom of the Si MWs, as can be seen in Fig. 4e,f. These 
random structures can be explained by the fact that excess holes generated in the isolated Au particles 
can etch Si atoms that exist in crystal planes in which there is a greater extent of inter-atomic bonding44, 
which means that MacEtching occurs preferentially along the <110> or <111>  direction. Thus, in order 
to prevent the formation of the isolated Au particles, the difference in etching rate between the centre 
and edge of the film should be minimized.

A combined model for Si MWs with a high aspect ratio.  There are a number of key issues such 
as the slow, non-uniform etch rate and the deformation of the Au film that prevent the reproducible 
fabrication of Si MWs with a high aspect ratio due to the long chemical diffusion in Model 1. However, 
if diffusion occurs instead via the small pores in the metal film proposed in Model 2, then these issues 
can be resolved simply by reducing the Ddiff. To increase the etch rate to form MWs with a high aspect 
ratio of more than 10, the morphology of the Au film was modified by introducing pores. This was based 
on the premise that the morphology of a thin film is typically determined by its deposition rate, in that 
nuclei are formed at certain cites then grow via surface diffusion and direct impingement to create larger 
and more irregular islands. In other words, continuous deposition creates a metallic network with more 
regular and smaller voids, and eventually a uniform metal layer is created51,52. At low deposition rates, the 
density of nuclei capable of merging to form grains is small, leading to a dense film with a small grain size. 
In contrast, a higher deposition rate increases the number of metal atoms deposited over a given period 
of time, resulting in the formation of bigger grains53. Thus, deposition rates of 0.1 to 3 Å/s and Au thick-
nesses of 20 to 40 nm were used to modify the morphology of the Au film (see supplementary Fig. S4);  
the SEM images in Fig.  5 showing the morphologies achieved and corresponding etching results. It is 
apparent from this that while pores are created by high-rate deposition (Fig. 5b), no pores can be seen in 
the Au film deposited at a lower rate (Fig. 5a). Moreover, there is a significant increase in the etching rate 
of the film over a period of 60 min if it is created using a higher rate of deposition, as shown in Fig. 5c,d, 
with the 23.2 μ m final length of the etched Si MWs corresponding to an etch rate of ~386 nm/min.  
This etch rate is only slightly less than the ~397 min/min of Si NWs, which suggests that the pores 
formed during the high-rate deposition of the Au film can act as channels to reduce Ddiff and increase 
the etch rate without any discernible deformation of the film.

Figure 3.  Arrhenius plots showing the temperature dependence of the etch rate (ln(rate) vs 1/T) of Si 
nanowires (blue symbols) and microwires (red symbols) during 5, 30, and 60 min of MacEtching. The 
solid lines represent best fits to the experimental data. The average activation energies for the Si nanowires 
and microwires were calculated from the Arrhenius plots.
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Figure  6 summarizes the conditions used for the etching of Si in relation to the Au thickness and 
deposition rate achieved, which can be broadly divided three distinct regions. In Region 1 (R1), Si NWs 
can be obtained due to the fact that the Au film consists of a network of isolated nanoparticles that do 
not completely cover the surface of the Si, and so a high etch rate is possible due to the short Ddiff of 
Model 2. The creation of Si MWs, however, requires that the Au film thickness be at least 30 nm in order 
to ensure complete coverage of the Si surface. The conditions of Region 2 (R2) are sufficient to produce 
Si MWs, but high aspect ratio structures cannot be obtained due to the formation of isolated Au parti-
cles as a result of the non-uniform etch rate. Further complicating matters is the fact that the etch rate 
is very low due to the long Ddiff of Model 1, unless of course the morphology of the Au film is suitably 
modified. Between Region 1 and 2, however, there is a clear processing window (Region 3, R3) in which 

Figure 4.  SEM images of Si microwires etched at 30 °C for (a,b) 30, (c) 45, (d) 60, and (e,f) 90 min. 
In panel (b), the magnified image of the region marked in panel (a) shows the undesired formation of 
nanowires between Si microwires. With etching time greater than 50 min, a discontinuous and cracked film 
was produced that resulted in the formation of randomly etched structures.
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Figure 5.  Top-view SEM images of 30 nm-thick Au films deposited at rates of (a) 1 and (b) 3 Å/s. The 
inset of (b) shows a high-magnification SEM image of a pore in the Au film. Cross-sectional SEM images of 
Si microwires etched from a substrate with a 30 nm-thick Au film deposited at a rate of (c) 1 and (d) 3 Å/s. 
A fast Au film deposition rate produced small pores, leading to a higher Si microwire etch rate of ~386 nm/
min due to the shorter chemical diffusion path.

Figure 6.  Wire structures and MacEtch rates as a function of the deposition rate and thickness of the Au 
catalyst film. MacEtch conditions can be divided into three distinct regions. In Region 1 (R1, blue circles 
at bottom), Si nanowires can be obtained due to the fact that the Au film consists of a network of isolated 
nanoparticles. The conditions of Region 2 (R2, red circles at top left) are sufficient to produce Si microwires, 
but high aspect ratio structures cannot be obtained due to the non-uniform etch rate. In Region 3 (R3, red 
circles a top right), the vertically aligned Si microwires with a high aspect ratio were obtained using an Au 
film with a thickness of 30 to 40 nm and a fast deposition rate (≥3 Å/s) in Region 3.
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high quality Si MWs with a high aspect ratio can be obtained via the MacEtch process. This region is 
marked in Fig. 6, which shows that the appropriate ranges for the Au thickness and deposition rate are 
30–40 nm and 2–5 Å/s. Furthermore, this represents a region in which long-range diffusion by Model 1 
and short-range diffusion by Model 2 coexist. This means that in order to achieve a rapid rate of etching, 
it is simply a matter of ensuring the dominance of Model 2 by creating small pores in a continuous film 
deposited at a high rate (≥3 Å/s). A complete summary of these results and corresponding SEM images 
can be found in supplementary Fig. S5.

MacEtched Si microwire solar cells.  High quality vertical Si MWs with a diameter and spacing 
of 2 μ m, and a 10 μ m length, were fabricated on a 4-in. wafer using optimized MacEtch conditions to 
assess their suitability for use in solar cell applications (Fig. 7). For this, a highly doped n-type emitter 
layer was first added using a spin-on-doping (SOD) method10 to provide a radial p-n junction with 
a sheet resistance of ~30 Ω /sq in which the junction depth was estimated to be ~540 nm from the 
surface and the surface doping concentration measured to be 7.1 ×  1020 cm−3 based on its secondary 
ion mass spectrometry (SIMS) profile (supplementary Fig. S6). A thin SiNx layer (60-nm-thick) was 
then deposited by plasma-enhanced chemical deposition (PECVD) to provide an anti-reflection and 
passivation layer. Table 1 shows the photovoltaic properties of planar and MW solar cells. This reveals 
that the best performance of the MW solar cells achieved a photovoltaic conversion efficiency (PCE) of 
13.0%, along with an open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of 
547.7 mV, 33.2 mA/cm2, and 71.3%, respectively. Note that the PCE of the Si MW solar cell is still rela-
tively low compared to that of conventional crystalline Si solar cells, a possible reason for which would 
be non-optimized doping of emitter layer and top electrode structure. That is, since the front contact 
was formed by selectively-patterned Al electrode around the Si MW arrays with 1 cm2 cell area as shown 
in Fig.  7, the MW solar cells should have a highly-doped emitter for efficient collection of carriers 
through the front electrode, leading to serious Auger and surface recombination in the MWs. Despite 

Figure 7.  (a) Schematic illustration and (b) optical image of Si microwire solar cells. (c) Current density 
versus voltage characteristics of planar (black circle and line) and microwire solar cells with (red circle and 
line) and without a thin SiNx layer (blue circle and line) under an illumination of AM 1.5G. (d) External 
quantum efficiencies (solid circle) and reflectance spectra (open circle) of planar (black circle and line) and 
microwire cells with (red circle and line) and without thin SiNx layer (blue circle and line). The microwire 
solar cells with a SiNx layer achieved a photovoltaic conversion efficiency of 13.0% owing to a significant 
improvement in external quantum efficiency and short-circuit current density.
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this performance degradation due to recombination, the Jsc value of the MW solar cells represents a 
significant improvement over that of the planar devices (21.0 mA/cm2), which can mainly be attrib-
uted to the enhanced light trapping efficiency of the vertically-aligned MWs. The reflectance (Fig. 7d), 
wavelength-averaged over the main spectral range from 400 to 1000 nm, is also reduced from ~39.9 to 
~3.5% when highly-dense MWs are used, which is consistent with the increase in external quantum 
efficiency (EQE in Fig. 7d). Furthermore, the improved EQE value at short-wavelengths (400–550 nm) 
indicates a much better response to blue light (high energy photons) than a planar device that is caused 
not only by the increased light absorption, but also the effective carrier separation of the radial junction 
in MWs. The Voc and FF values of the MW solar cells are comparable to those of the planar device, even 
though the MW cells do have a much larger surface area, which can be explained through an analysis 
of the effective minority carrier lifetime (τ eff). As shown in supplementary Fig. S7, the effective lifetimes 
of the two cell types were measured by a microwave photoconductivity decay (μ -PCD) method using 
a commercially available scanner (Semilab, WT-2000PVN), which found that the τ eff of the MW cells 
(9.63 μ s) is very similar to that of the planar cells (9.98 μ s). On the basis of this, it is considered that the 
high-quality Si MWs fabricated by optimized MacEtch conditions can produce highly efficient solar cells.

Discussion
Experimental investigation of the mechanism behind which Si MWs can be created by the MacEtch pro-
cess has demonstrated through a series of experiments that this process can be controlled through var-
ying the thickness (10 to 70 nm) and deposition rate (0.1 to 5 Å/s) of the thin Au catalyst layer. In other 
words, a thick (30 to 50 nm) Au film produces well-aligned vertical Si MW arrays. Based on Arrhenius 
plots, the activation energy for the Si MWs (0.15 ±  0.05 eV) was found to be much smaller than that of 
Si NWs (0.36 ±  0.01 eV), indicating that the etching kinetics of Si MWs should be different from those 
of Si NWs. It was also found that the diffusion distance of the reactants and reaction products needs to 
be of a nanometer-scale to ensure a high etch rate, and by reducing the diffusion distance, high-quality Si 
MWs with a high-aspect ratio of up to 11.6 (2 μ m in diameter and 23.2 μ m in length) were successfully 
obtained. The rapid rate of etching could be demonstrated by creating small pores in the continuous film 
deposited at the high rate of ≥3 Å/s. Using this knowledge, highly efficient (13.0%) MW solar cells were 
fabricated via the MacEtch method, with a Voc of 547.7 mV, a Jsc of 33.2 mA/cm2, and a FF of 71.3% all 
being achieved as a result of the enhanced light trapping of the vertically aligned wire arrays and the 
effective carrier collection of the high-quality radial junction. These MacEtched MWs therefore clearly 
represent a very promising candidate for the next-generation of cost-effective photovoltaics.

Methods
Fabrication and characterization of vertical Si microwires.  Si MWs arrays were fabricated from 
Czochralski (CZ) p-type Si wafers (resistivity of 1–10 Ω. cm, 550-μ m thick). Circular-shaped photore-
sist dot arrays (2 μ m in diameter, 2 or 5 μ m spacing) were periodically patterned using DNR-L300-
30 photoresist (Dongjin Semichem) through the photolithography. To remove photoresist residues, the 
oxygen-plasma treatment were conducted in plasma asher (V15-G, KAMI) with 300 W for 5 min. Then, 
thin Au films were uniformly deposited on the Si substrates by thermal evaporator. The thickness and 
deposition rate were varied to control the morphology of Au film. MacEtch in a mixed solution of 
de-ionized water, HF (10 M), and H2O2 (0.3 M) resulted in the formation of NWs or MWs depend-
ing on metal catalyst conditions. After MacEtch process, Au films were removed using the commercial 
Au etchant (Sigma-aldrich) and then the substrates were cleaned in acetone to remove all photoresist 
remaining on top of the MWs. The surface morphology of Si MWs was characterized by field-emission 
scanning electron microscopy (FE-SEM, Hitachi S-4800).

Fabrication of vertical Si microwire solar cells.  An emitter layer was formed by phosphorus dif-
fusion via the spin-on-dopant (SOD) method. First, phosphorus dopant source (P509, Filmtronics, Inc.) 
was spin-coated on a dummy Si wafer, and then baked at 200 °C for 10 min. To form the conformal 
doping on MWs, we positioned Si MWs sample so that it faced the phosphorus-coated dummy wafer. 
The diffusion doping was carried out in a tube furnace under a mixed ambient of 20% O2 and 80% N2 
at 850 °C. Phosphorus glass that remained after the SOD diffusion was removed by using a diluted HF 
solution. After removing phosphorus glass and SiOx layer, a thin SiNx layer (60-nm-thick) was depos-
ited by PE-CVD (PEH-600, SORONA). For the top and bottom contacts, 200-nm-thick Al films were 
deposited on the top and bottom of samples using a thermal evaporator. In creating the top electrode 

Voc [mV] Jsc [mA/cm2] FF [%] PCE [%]

Planar cell 557.8. 21.0 72.6 8.5

Si MW cell w/o SiNx 547.5 27.3 70.7 10.6

Si MW cell w/ SiNx 547.7 33.2 71.3 13.0

Table 1.   Photovoltaic performance of planar and MW solar cells with and without thin SiNx layer.
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with the optical widows, the Si MWs were covered with photoresist (AZ9260, AZ electronic materials, 
thickness of ~20 μ m) before the metal deposition using lithography process. The active area of the MW 
solar cells was 1 cm2.

Characterization of vertical Si microwires solar cell.  The depth profile of phosphorus ions has 
been measured by using a magnetic-sector secondary ion mass spectrometer (SIMS, CAMECA IMS 7 
f) attached a Cs ionization source. The Cs+primary ions were accelerated to 10 keV and the secondary 
positive ions were extracted at 5 keV. Current-voltage (I-V) characteristics of the devices in the dark were 
investigated using a semiconductor parameter analyzer (4200-CSC, Keithley). The photovoltaic properties 
of our solar cells were investigated using a solar simulator (Class AAA, Oriel Sol3A, Newport) under AM 
1.5G illumination. Incident flux was measured using a calibrated power meter, and double-checked using 
a NREL-calibrated solar cell (PV Measurements, Inc.). EQE was measured using a Xe light source and a 
monochromator in the wavelengths range of 400–1100 nm. Optical reflection measurements were per-
formed over wavelengths of 400–1100 nm using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) 
equipped with a 110 mm integrating sphere to account for total light (diffuse and specular) reflected from 
the samples. The effective lifetimes were measured by the microwave photoconductivity decay (μ -PCD) 
method using a commercially available lifetime scanner (Semilab, WT-2000PVN). In this method, the 
samples are illuminated by a laser pulse (905 ±  10 nm pulsed laser operating at 200 nm cycles) and then 
the decay of minority carriers is measured by monitoring the reflected microwave signal.
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