BROWSE

Related Researcher

Author

Kwon, Tae-Hyuk
Energy Recognition
Research Interests
  • Energy transfer, organic solar cells, supercapacitor, ultrasonic spray chemistry, dithienothiophene, iridium complexes, phosphorescent bioapplications

ITEM VIEW & DOWNLOAD

Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators

Cited 50 times inthomson ciCited 40 times inthomson ci
Title
Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators
Author
Daeneke, TorbenMozer, Attila J.Kwon, Tae-HyukDuffy, Noel W.Holmes, Andrew B.Bach, UdoSpiccia, Leone
Keywords
Charge recombinations; Charge transfer process; Charge-transfer reactions; Cyclopentadienyl rings; Device operations; Driving forces; Dye regeneration; Dye-Sensitized solar cell; Ferrocene compounds; Ferrocene derivative; High energy; Higher efficiency; Open circuit potential; Recombination loss; Redox couple; Redox mediators; Redox potentials; Redox property; Redox shuttle; TiO
Issue Date
201205
Publisher
ROYAL SOC CHEMISTRY
Citation
ENERGY & ENVIRONMENTAL SCIENCE, v.5, no.5, pp.7090 - 7099
Abstract
Ferrocene compounds are promising redox shuttles for application in dye-sensitized solar cells (DSCs). Chemical modification of the cyclopentadienyl rings is easily achievable affording almost unlimited variation of the redox properties. This allows fine-tuning of the driving force for dye-regeneration and optimization of the energy conversion efficiency of DSCs. Herein, six ferrocene derivatives have been chosen for investigation which cover the large redox potential range of 0.85 V, by virtue of simple alkylation and halogenation of the cyclopentadienyl ring, and enable improved matching of the energy levels of the sensitizer and the electrolyte. Although the focus of this work was to examine the effect of the redox potential on charge transfer processes, DSCs were fabricated which achieved high energy conversion efficiencies of over 5%. Charge transfer reactions were studied to reveal the dependence of the dye regeneration rate, recombination losses and recombination pathways on the reaction driving force. An increase in redox potential led to a higher efficiency due to higher open circuit potentials until a threshold is reached. At this threshold, the driving force for dye regeneration (18 kJ mol -1, ΔE = 0.19 V) becomes too small for efficient device operation, leading to rapid recombination between the oxidized dye and electrons in the TiO2 conduction band. As a result of this work guidelines can be formulated to aid the selection of redox couples for a particular sensitizer in order to maximize the utilization of incident solar energy.
URI
Go to Link
DOI
http://dx.doi.org/10.1039/c2ee21257a
ISSN
1754-5692
Appears in Collections:
SNS_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU