File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김병수

Kim, Byeong-Su
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Hydrophobic Effects in the Critical Destabilization and Release Dynamics of Degradable Multilayer Films

Author(s)
Smith, Renee C.Leung, AmyKim, Byeong-SuHammond, Paula T.
Issued Date
2009-03
DOI
10.1021/cm802972d
URI
https://scholarworks.unist.ac.kr/handle/201301/8438
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=65249107675
Citation
CHEMISTRY OF MATERIALS, v.21, no.6, pp.1108 - 1115
Abstract
Recent research has highlighted the ability of hydrolytically degradable electrostatic layer-by-layer films to act as versatile drug delivery systems capable of multiagent release. A key element of these films is the potential to gain precise control of release by evoking a surface-erosion mechanism. Here we sought to determine the extent to which manipulation of chemical structure could be used to control release from hydrolytically degradable layer-by-layer films through modification of the degradable polycation. Toward this goal, films composed of poly(β-amino ester)s, varying only in the choice of diacrylate monomer, and the model biological drug, dextran sulfate, were used to ascertain the role of alkyl chain length, steric hindrance, and hydrophobicity on release dynamics. Above a critical polycation hydrophobicity, as determined using octanol:water coefficients, the film becomes rapidly destabilized and quickly released its contents. These findings indicate that in these unique electrostatic assemblies, hydrolytic susceptibility is dependent not only on hydrophobicity but a complex balance between hydrophobic composition, charge density, and stability of electrostatic ion pairs. Computational determination of octanokwater coefficients allowed for the reliable prediction of release dynamics. The determination of a correlation between the octanokwater coefficient and release duration will enable advanced engineering to produce custom drug delivery systems.
Publisher
AMER CHEMICAL SOC
ISSN
0897-4756
Keyword
LAYER THIN-FILMSPOLYELECTROLYTE MULTILAYERGENE DELIVERYANIONIC POLYELECTROLYTESBETA-CYCLODEXTRINDRUG-RELEASEEROSIONDNACONSTRUCTIONCOMBINATIONS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.