File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

임영빈

Im, Youngbin
Next-generation Networks and Systems Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

ECLAT: An ECN marking system for latency guarantee in cellular networks

Author(s)
Kim, JunseonIm, YoungbinLee, Kyunghan
Issued Date
2021-05-13
DOI
10.1109/INFOCOM42981.2021.9488762
URI
https://scholarworks.unist.ac.kr/handle/201301/77420
Citation
IEEE Conference on Computer Communications
Abstract
As the importance of latency performance increases, a number of multi-bit feedback-based congestion control mechanisms have been proposed for explicit latency control in cellular networks. However, due to their reactive nature and limited access to the network queue, while latency reduction was possible, latency guarantee has not been achieved. Also, due to the need for end-host modifications, it was hard to commonly provide latency benefit to all connected devices. To this end, we propose a novel network-assisted congestion control, ECLAT, which can always bound the queuing delay within a delay-budget through ECN-based single-bit feedback while maintaining high link utilization for any device. To do so, ECLAT 1) calculates its target operating point for each flow, which is related to the maximum allowable cwnd to meet the delay-budget under time-varying cellular networks, and 2) determines its single-bit feedback policy to limit cwnd within the target operating point. Our extensive experiments in our testbed demonstrate that ECLAT is able to bound the queuing delays of multiple flows within their delay-budget and achieve high utilization even in the dynamic cellular network environment.
Publisher
Institute of Electrical and Electronics Engineers Inc.

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.