File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

류정기

Ryu, Jungki
Bioinspired Functional Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization

Author(s)
Ryu, JungkiKu, Sook HeeLee, HaeshinPark, Chan Beum
Issued Date
2010-07
DOI
10.1002/adfm.200902347
URI
https://scholarworks.unist.ac.kr/handle/201301/7724
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77955412234
Citation
ADVANCED FUNCTIONAL MATERIALS, v.20, no.13, pp.2132 - 2139
Abstract
Bone tissue is a complex biocomposite material with a variety of organic (e.g., proteins, cells) and inorganic (e.g., hydroxyapatite crystals) components hierarchically organized with nano/microscale precision. Based on the understanding of such hierarchical organization of bone tissue and its unique mechanical properties, efforts are being made to mimic these organic inorganic hybrid biocomposites. A key factor for the successful designing of complex, hybrid biomaterials is the facilitation and control of adhesion at the interfaces, as many current synthetic biomaterials are inert, lacking interfacial bioactivity. In this regard, researchers have focused on controlling the interface by surface modifications, but the development of a simple, unified way to biofunctionalize diverse organic and inorganic materials remains a critical challenge. Here, a universal biomineralization route, called polydopamine-assisted hydroxyapatite formation (pHAF), that can be applied to virtually any type and morphology of scaffold materials is demonstrated. Inspired by the adhesion mechanism of mussels, the pHAF method can readily integrate hydroxyapatites on ceramics, noble metals, semiconductors, and synthetic polymers, irrespective of their size and morphology (e.g., porosity and shape). Surface-anchored catecholamine moieties in polydopamine enriches the interface with calcium ions, facilitating the formation of hydroxyapatite crystals that are aligned to the c-axes, parallel to the polydopamine layer as observed in natural hydroxyapatites in mineralized tissues. This universal surface biomineralization can be an innovative foundation for future tissue engineering.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
1616-301X

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.