File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

백충기

Baig, Chunggi
Theoretical and Computational Study of Polymers & Nanomaterials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

A molecular dynamics study of the stress-optical behavior of a linear short-chain polyethylene melt under shear

Author(s)
Baig, ChunggiEdwards, Brian J.Keffer, David J.
Issued Date
2007-12
DOI
10.1007/s00397-007-0199-2
URI
https://scholarworks.unist.ac.kr/handle/201301/6988
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=37249016979
Citation
RHEOLOGICA ACTA, v.46, no.9, pp.1171 - 1186
Abstract
In this study, we present details of the stress-optical behavior of a linear polyethylene melt under shear using a realistic potential model. We demonstrate the existence of the critical shear stress, above which the stress-optical rule (SOR) begins to be invalid. The critical shear stress of the SOR of this melt turns out to be 5.5 MPa, which is fairly higher than 3.2 MPa at which shear thinning starts, indicating that the SOR is valid up to a point well beyond the incipient point of shear thinning. Furthermore, contrary to conventional wisdom, the breakdown of the SOR turns out not to be correlated with the saturation of chain extension and orientation: It occurs at shear rates well before maximum chain extension is obtained. In addition to the stress and birefringence tensors, we also compare two important coarse-grained second-rank tensors, the conformation and orientation tensors. The birefringence, conformation, and orientation tensors display nonlinear relationships to each other at high values of the shear stress, and the deviation from linearity begins at approximately the critical shear stress for breakdown of the SOR.
Publisher
SPRINGER
ISSN
0035-4511
Keyword (Author)
birefringencestress-optical ruleshearnonequilibrium molecular dynamicslinear polyethylene melt
Keyword
ELONGATIONAL FLOWPOLYMER MELTSBIREFRINGENCE MEASUREMENTSAMORPHOUS POLYMERSPOLYSTYRENE MELTSUNIAXIAL ELONGATIONSIMULATIONSRHEOMETERDECANETETRACOSANE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.