File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이덕중

Lee, Deokjung
Computational Reactor physics & Experiment Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Development and validation of isotope prediction module for VVER spent nuclear fuel analysis

Author(s)
Jang, JaerimLee, Deokjung
Issued Date
2023-12
DOI
10.1016/j.net.2023.12.032
URI
https://scholarworks.unist.ac.kr/handle/201301/67155
Citation
NUCLEAR ENGINEERING AND TECHNOLOGY
Abstract
A spent nuclear fuel (SNF) analysis module for the Vodo-Vodyanoi Energetichesky Reactor (VVER) was developed and validated in this study. This advancement expands the application area of the existing nodal diffusion code, RAST-V, and reduces the need for additional code during 3D core simulations for SNF analysis, leading to increased efficiency in simulation time. RAST-V uses Lagrange interpolation and a power correction factor derived from the Bateman equation to bypass the re-depletion calculations, which are used to solve the micro-depletion chain. This approach improved the efficiency of analysis. To mirror the conditions during the 3D core simulations, the module used history indices related to the moderator temperature, fuel temperature, and boron concentration. The module can predict 1620 isotopes. This paper presents the validation of this isotope inventory prediction and the application of burnup credit. The VVER analysis module was validated using 28 samples discharged from the Novovoronezh-4. Most isotopes were within 10 % of the boundaries of the measurements. This study successfully offers verification results using VVER benchmarks and discusses the application of burnup credit using a VVER-440 cask.
Publisher
한국원자력학회
ISSN
1738-5733

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.