File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

임정호

Im, Jungho
Intelligent Remote sensing and geospatial Information Science Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Novel Features of Canopy Height Distribution for Aboveground Biomass Estimation Using Machine Learning: A Case Study in Natural Secondary Forests

Author(s)
Ma, YeZhang, LianjunIm, JunghoZhao, YinghuiZhen, Zhen
Issued Date
2023-09
DOI
10.3390/rs15184364
URI
https://scholarworks.unist.ac.kr/handle/201301/66054
Citation
REMOTE SENSING, v.15, no.18, pp.4364
Abstract
Identifying important factors (e.g., features and prediction models) for forest aboveground biomass (AGB) estimation can provide a vital reference for accurate AGB estimation. This study proposed a novel feature of the canopy height distribution (CHD), a function of canopy height, that is useful for describing canopy structure for AGB estimation of natural secondary forests (NSFs) by fitting a bimodal Gaussian function. Three machine learning models (Support Vector Regression (SVR), Random Forest (RF), and eXtreme Gradient Boosting (Xgboost)) and three deep learning models (One-dimensional Convolutional Neural Network (1D-CNN4), 1D Visual Geometry Group Network (1D-VGG16), and 1D Residual Network (1D-Resnet34)) were applied. A completely randomized design was utilized to investigate the effects of four feature sets (original CHD features, original LiDAR features, the proposed CHD features fitted by the bimodal Gaussian function, and the LiDAR features selected by the recursive feature elimination algorithm) and models on estimating the AGB of NSFs. Results revealed that the models were the most important factor for AGB estimation, followed by the features. The fitted CHD features significantly outperformed the other three feature sets in most cases. When employing the fitted CHD features, the 1D-Renset34 model demonstrates optimal performance (R2 = 0.80, RMSE = 9.58 Mg/ha, rRMSE = 0.09), surpassing not only other deep learning models (e.g.,1D-VGG16: R2 = 0.65, RMSE = 18.55 Mg/ha, rRMSE = 0.17) but also the best machine learning model (RF: R2 = 0.50, RMSE = 19.42 Mg/ha, rRMSE = 0.16). This study highlights the significant role of the new CHD features fitting a bimodal Gaussian function and the effects between the models and the CHD features, which provide the sound foundations for effective estimation of AGB in NSFs.
Publisher
MDPI
ISSN
2072-4292
Keyword (Author)
AGBUAV-LiDARmachine learning modelsdeep learning modelscanopy height distributionbimodal gaussian function
Keyword
LIDAR DATAMODELMETAANALYSISALGORITHMSCOVERCHINA

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.