File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 5721 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 14 -
dc.contributor.author Kim, Jung-Hui -
dc.contributor.author Lee, Kyung Min -
dc.contributor.author Kim, Ji Won -
dc.contributor.author Kweon, Seong Hyeon -
dc.contributor.author Moon, Hyun-Seok -
dc.contributor.author Yim, Taeeun -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-21T11:43:49Z -
dc.date.available 2023-12-21T11:43:49Z -
dc.date.created 2023-10-25 -
dc.date.issued 2023-09 -
dc.description.abstract Despite the enormous interest in high-areal-capacity Li battery electrodes, their structural instability and nonuniform charge transfer have plagued practical application. Herein, we present a cationic semi-interpenetrating polymer network (c-IPN) binder strategy, with a focus on the regulation of electrostatic phenomena in electrodes. Compared to conventional neutral linear binders, the c-IPN suppresses solvent-drying-induced crack evolution of electrodes and improves the dispersion state of electrode components owing to its surface charge-driven electrostatic repulsion and mechanical toughness. The c-IPN immobilizes anions of liquid electrolytes inside the electrodes via electrostatic attraction, thereby facilitating Li+ conduction and forming stable cathode-electrolyte interphases. Consequently, the c-IPN enables high-areal-capacity (up to 20 mAh cm-2) cathodes with decent cyclability (capacity retention after 100 cycles = 82%) using commercial slurry-cast electrode fabrication, while fully utilizing the theoretical specific capacity of LiNi0.8Co0.1Mn0.1O2. Further, coupling of the c-IPN cathodes with Li-metal anodes yields double-stacked pouch-type cells with high energy content at 25 & DEG;C (376 Wh kgcell-1/1043 Wh Lcell-1, estimated including packaging substances), demonstrating practical viability of the c-IPN binder for scalable high-areal-capacity electrodes. Binders employed in battery electrodes are conventionally neutral linear polymers. Here, authors present a cationic semi-interpenetrating polymer network binder to regulate electrostatic phenomena, improving the properties and performance of high-capacity positive electrodes for Li metal batteries. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.14, no.1, pp.5721 -
dc.identifier.doi 10.1038/s41467-023-41513-1 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85171345450 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/66016 -
dc.identifier.wosid 001070435900008 -
dc.language 영어 -
dc.publisher NATURE PORTFOLIO -
dc.title Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HIGH-ENERGY -
dc.subject.keywordPlus ION -
dc.subject.keywordPlus CATHODE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.