File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김성필

Kim, Sung-Phil
Brain-Computer Interface Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 169 -
dc.citation.number 3 -
dc.citation.startPage 157 -
dc.citation.title EXPERIMENTAL NEUROBIOLOGY -
dc.citation.volume 32 -
dc.contributor.author Kim, Jaehun -
dc.contributor.author Choi, Young In -
dc.contributor.author Sohn, Jeong-woo -
dc.contributor.author Kim, Sung-Phil -
dc.contributor.author Jung, Sung Jun -
dc.date.accessioned 2023-12-21T12:36:29Z -
dc.date.available 2023-12-21T12:36:29Z -
dc.date.created 2023-09-01 -
dc.date.issued 2023-06 -
dc.description.abstract To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch. -
dc.identifier.bibliographicCitation EXPERIMENTAL NEUROBIOLOGY, v.32, no.3, pp.157 - 169 -
dc.identifier.doi 10.5607/en23005 -
dc.identifier.issn 1226-2560 -
dc.identifier.scopusid 2-s2.0-85165231188 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/65331 -
dc.identifier.wosid 001041947700004 -
dc.language 영어 -
dc.publisher KOREAN SOC BRAIN & NEURAL SCIENCE, KOREAN SOC NEURODEGENERATIVE DISEASE -
dc.title Modeling Long-term Spike Frequency Adaptation in SA-I Afferent Neurons Using an Izhikevich-based Biological Neuron Model -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Medicine, Research & Experimental; Neurosciences -
dc.relation.journalResearchArea Research & Experimental Medicine; Neurosciences & Neurology -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.description.journalRegisteredClass kci -
dc.subject.keywordAuthor Touch -
dc.subject.keywordAuthor Physiological adaptation -
dc.subject.keywordAuthor Afferent neuron -
dc.subject.keywordAuthor Neurological models -
dc.subject.keywordAuthor Computer simulation -
dc.subject.keywordPlus ELECTRONIC SKIN -
dc.subject.keywordPlus TACTILE -
dc.subject.keywordPlus SENSORS -
dc.subject.keywordPlus MECHANORECEPTORS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.