File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 4047 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 14 -
dc.contributor.author Kwon, Hyeokjin -
dc.contributor.author Choi, Hyun-Ji -
dc.contributor.author Jang, Jung-kyu -
dc.contributor.author Lee, Jinhong -
dc.contributor.author Jung, Jinkwan -
dc.contributor.author Lee, Wonjun -
dc.contributor.author Roh, Youngil -
dc.contributor.author Baek, Jaewon -
dc.contributor.author Shin, Dong Jae -
dc.contributor.author Lee, Ju-Hyuk -
dc.contributor.author Choi, Nam-Soon -
dc.contributor.author Meng, Ying Shirley -
dc.contributor.author Kim, Hee-Tak -
dc.date.accessioned 2023-12-21T11:50:32Z -
dc.date.available 2023-12-21T11:50:32Z -
dc.date.created 2023-09-01 -
dc.date.issued 2023-07 -
dc.description.abstract The pulverization of lithium metal electrodes during cycling recently has been suppressed through various techniques, but the issue of irreversible consumption of the electrolyte remains a critical challenge, hindering the progress of energy-dense lithium metal batteries. Here, we design a single-ion-conductor-based composite layer on the lithium metal electrode, which significantly reduces the liquid electrolyte loss via adjusting the solvation environment of moving Li+ in the layer. A Li||Ni0.5Mn0.3Co0.2O2 pouch cell with a thin lithium metal (N/P of 2.15), high loading cathode (21.5 mg cm(-2)), and carbonate electrolyte achieves 400 cycles at the electrolyte to capacity ratio of 2.15 g Ah(-1) (2.44 g Ah(-1) including mass of composite layer) or 100 cycles at 1.28 g Ah(-1) (1.57 g Ah(-1) including mass of composite layer) under a stack pressure of 280 kPa (0.2 C charge with a constant voltage charge at 4.3 V to 0.05 C and 1.0 C discharge within a voltage window of 4.3 V to 3.0 V). The rational design of the single-ion-conductor-based composite layer demonstrated in this work provides a way forward for constructing energy-dense rechargeable lithium metal batteries with minimal electrolyte content. The reactivity between lithium and a liquid electrolyte leads to degradation of a lithium metal battery, resulting in the depletion of the liquid electrolyte. Here, authors develop a composite layer that can mitigate the reactivity and consequently enable long-cycling lithium metal batteries. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.14, no.1, pp.4047 -
dc.identifier.doi 10.1038/s41467-023-39673-1 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85164118962 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/65320 -
dc.identifier.wosid 001025242000008 -
dc.language 영어 -
dc.publisher NATURE PORTFOLIO -
dc.title Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HIGH-ENERGY -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus ANODE -
dc.subject.keywordPlus INTERPHASES -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus PATHWAY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.