File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

백종범

Baek, Jong-Beom
Center for Dimension-Controllable Organic Frameworks
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 37 -
dc.citation.startPage e202307459 -
dc.citation.title ANGEWANDTE CHEMIE-INTERNATIONAL EDITION -
dc.citation.volume 62 -
dc.contributor.author Li, Zhongping -
dc.contributor.author Sun, Linhai -
dc.contributor.author Zhai, Lipeng -
dc.contributor.author Oh, Kyeong-Seok -
dc.contributor.author Seo, Jeong-Min -
dc.contributor.author Li, Changqing -
dc.contributor.author Han, Diandian -
dc.contributor.author Baek, Jong-Beom -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-21T11:50:29Z -
dc.date.available 2023-12-21T11:50:29Z -
dc.date.created 2023-09-01 -
dc.date.issued 2023-11 -
dc.description.abstract Despite the enormous interest in Li metal as an ideal anode material, the uncontrollable Li dendrite growth and unstable solid electrolyte interphase have plagued its practical application. These limitations can be attributed to the sluggish and uneven Li+ migration towards Li metal surface. Here, we report olefin-linked covalent organic frameworks (COFs) with electronegative channels for facilitating selective Li+ transport. The triazine rings and fluorinated groups of the COFs are introduced as electron-rich sites capable of enhancing salt dissociation and guiding uniform Li+ flux within the channels, resulting in a high Li+ transference number (0.85) and high ionic conductivity (1.78 mS cm(-1)). The COFs are mixed with a polymeric binder to form mixed matrix membranes. These membranes enable reliable Li plating/stripping cyclability over 700 h in Li/Li symmetric cells and stable capacity retention in Li/LiFePO4 cells, demonstrating its potential as a viable cationic highway for accelerating Li+ conduction. -
dc.identifier.bibliographicCitation ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.62, no.37, pp.e202307459 -
dc.identifier.doi 10.1002/anie.202307459 -
dc.identifier.issn 1433-7851 -
dc.identifier.scopusid 2-s2.0-85166536466 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/65319 -
dc.identifier.wosid 001042355300001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Olefin-Linked Covalent Organic Frameworks with Electronegative Channels as Cationic Highways for Sustainable Lithium Metal Battery Anodes -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Cationic Membranes -
dc.subject.keywordAuthor Covalent Organic Frameworks -
dc.subject.keywordAuthor Electronegative Channels -
dc.subject.keywordAuthor Lithium Batteries -
dc.subject.keywordAuthor Olefin Linkage -
dc.subject.keywordPlus ELECTROLYTE -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus LIFE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.