BROWSE

Related Researcher

Author

Cho, Moo Je
Ulsan National Institute of Science and Technology
Research Interests
  • Calcium Signaling

ITEM VIEW & DOWNLOAD

Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus

Cited 28 times inthomson ciCited 26 times inthomson ci
Title
Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus
Author
Yoon, HWKim, MCShin, PGKim, JSKim, CYLee, SYHwang, IBahk, JDHong, JCHan, CCho, Moo Je
Keywords
Abscisic acid; Osmotic stress; Protein phosphorylation; Serine protein kinase
Issue Date
1997
Publisher
Springer Verlag
Citation
MOLECULAR AND GENERAL GENETICS, v.255, no.4, pp.359 - 371
Abstract
Two soybean cDNA clones, SPK-3 and SPK-4, encoding putative protein kinases were isolated and characterized. Both cDNAs encoded approximately 40-kDa serine/threonine kinases with unusual stretches of acidic amino acids in their carboxy-terminal regions, which are highly homologous to PKABA1 from wheat and ASKs from Arabidopsis. These kinases are encoded by one- or two-copy genes in the soybean genome. Notably, SPK-3 and -4 showed different patterns of expression in various soybean tissues. SPK-3 is highly expressed in dividing and elongating tissues of young seedlings but relatively weakly in tissues of mature plants. In contrast, SPK-4 showed relatively high and constitutive expression in all the tissues examined except for leaf tissues of mature plants. Although various stressors, such as dehydration and high salinity, increased the expression of both genes, the induction kinetics were different. The two genes also differed in their response to abscisic acid (ABA). SPK-3 was induced but SPK-4 was not affected by exogenously supplied abscisic acid. In accordance with these expression data analysis of the activity of a chimeric SPK-3 promoter::β-glucuronidase (GUS) reporter gene by transient expression in tobacco leaves confirmed the inducibility of SPK-3 by salt and ABA. Polyclonal antibodies raised against a recombinant SPK-4 protein produced in Escherichia coli specifically recognized both recombinant SPK-3 and -4 proteins. Kinase assays using affinity-purified SPK-4/antibody complexes with crude soybean extracts as substrate identified specific phosphorylation of two 41 and 170 kDa soybean proteins that were phosphorylated on serine residues. Taken together, our results suggest that SPK-3, and/or SPK-4 are functional serine protein kinase(s). Furthermore, SPK-3 and -4 may play different roles in the transduction of various environmental stresses.
URI
Go to Link
DOI
http://dx.doi.org/10.1007/s004380050507
ISSN
0026-8925
Appears in Collections:
SLS_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU