File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

배효관

Bae, Hyokwan
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 127206 -
dc.citation.title BIORESOURCE TECHNOLOGY -
dc.citation.volume 355 -
dc.contributor.author Jeon, Junbeom -
dc.contributor.author Cho, Kyungjin -
dc.contributor.author Kang, Jinkyu -
dc.contributor.author Park, Suin -
dc.contributor.author Ada, Okpete Uchenna Esther -
dc.contributor.author Park, Jihye -
dc.contributor.author Song, Minsu -
dc.contributor.author Ly, Quang Viet -
dc.contributor.author Bae, Hyokwan -
dc.date.accessioned 2023-12-21T13:49:47Z -
dc.date.available 2023-12-21T13:49:47Z -
dc.date.created 2023-02-14 -
dc.date.issued 2022-07 -
dc.description.abstract In this study, the stability of the total nitrogen removal efficiency (TNRE) was modeled using an artificial neural network (ANN)-based binary classification model for the anaerobic ammonium oxidation (AMX) process under saline conditions. The TNRE was stabilized to 80.2 +/- 11.4% at the final phase under the salinity of 1.0 +/-& nbsp;0.02%. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis showed the predominance of Candidatus Jettenia genus. Real-time quantitative PCR analysis revealed the average abundance of Ca. Jettenia and Kuenenia spp. increased in 3.2 +/- 5.4 x 108 and 2.0 +/- 2.2 x 105 copies/mL, respectively. The prediction accuracy using operational parameters with data augmentation was 88.2%. However, integration with T-RFLP and real-time qPCR signals improved the prediction accuracy by 97.1%. This study revealed the feasible application of machine learning and biomolecular signals to the stability prediction of the AMX process under increased salinity. -
dc.identifier.bibliographicCitation BIORESOURCE TECHNOLOGY, v.355, pp.127206 -
dc.identifier.doi 10.1016/j.biortech.2022.127206 -
dc.identifier.issn 0960-8524 -
dc.identifier.scopusid 2-s2.0-85129470420 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/62361 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0960852422005351?via%3Dihub -
dc.identifier.wosid 000799612900005 -
dc.language 영어 -
dc.publisher ELSEVIER SCI LTD -
dc.title Combined machine learning and biomolecular analysis for stability assessment of anaerobic ammonium oxidation under salt stress -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels -
dc.relation.journalResearchArea Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Anammox -
dc.subject.keywordAuthor Salinity effect -
dc.subject.keywordAuthor Artificial-neural network -
dc.subject.keywordAuthor T-RFLP -
dc.subject.keywordAuthor Real-time qPCR -
dc.subject.keywordPlus MICROBIAL COMMUNITY -
dc.subject.keywordPlus OXIDIZING BACTERIA -
dc.subject.keywordPlus ANAMMOX BACTERIA -
dc.subject.keywordPlus NITROGEN-REMOVAL -
dc.subject.keywordPlus SALINITY -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus ADAPTATION -
dc.subject.keywordPlus REACTOR -
dc.subject.keywordPlus SYSTEM -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.