File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 791 -
dc.citation.startPage 783 -
dc.citation.title ENERGY STORAGE MATERIALS -
dc.citation.volume 50 -
dc.contributor.author Seo, Ji-Young -
dc.contributor.author Lee, Yong-Hyeok -
dc.contributor.author Kim, Jung-Hui -
dc.contributor.author Hong, Young-Kuk -
dc.contributor.author Chen, Wenshuai -
dc.contributor.author Lee, Young-Gi -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-21T13:39:34Z -
dc.date.available 2023-12-21T13:39:34Z -
dc.date.created 2023-03-06 -
dc.date.issued 2022-09 -
dc.description.abstract Despite their enormous potential as a high-energy-density power source, practical applications of Li-metal batteries have been plagued mainly by poor electrochemical longevity. Here, we present an electrode-customized separator (EC separator) based on self-assembled chiral nematic liquid crystalline cellulose nanocrystal (LC-CNC) as a natural material strategy to simultaneously address the electrochemical reversibility issues of both Li-metal anodes and high-capacity cathodes in Li-metal full cells. The EC separator (thickness similar to 10 mu m) com-prises a 3-glycidyloxypropyl trimethoxysilane (GPTMS)-modified LC-CNC layer on a polyethylene (PE) separator support layer. The LC-CNC layer enables facile/uniform Li+ flux toward Li-metal anodes owing to its ordered nanoporous channels and nanofluidic ion migration effect, thus improving Li plating/stripping cyclability. The GPTMS of the LC-CNC layer chelates heavy metal ions dissolved from high-capacity LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes, thereby enhancing structural stability of the cathodes. The resulting EC separator enables a Li-metal full cell to improve the volumetric energy density (1016 Wh L-cell(-1)), cycling retention (84% after 100 cycles vs. 0% for the pristine PE separator), and dimensional stability of the Li-metal anode under constrained cell conditions (thin Li-metal anode (20 mu m)/high-capacity NCM811 cathode), which outperform those of previously reported synthetic material-based separators for Li-metal full cells. -
dc.identifier.bibliographicCitation ENERGY STORAGE MATERIALS, v.50, pp.783 - 791 -
dc.identifier.doi 10.1016/j.ensm.2022.06.013 -
dc.identifier.issn 2405-8297 -
dc.identifier.scopusid 2-s2.0-85132816263 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/62195 -
dc.identifier.wosid 000817814900002 -
dc.language 영어 -
dc.publisher ELSEVIER -
dc.title Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Li-metal full cells -
dc.subject.keywordAuthor Electrode-customized separators -
dc.subject.keywordAuthor Cellulose nanocrystals -
dc.subject.keywordAuthor Self-assembled chiral nematic liquid crystals -
dc.subject.keywordAuthor Glycidyloxypropyl trimethoxysilane -
dc.subject.keywordPlus HIGH-ENERGY -
dc.subject.keywordPlus INTERPHASE LAYER -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus NITROGEN -
dc.subject.keywordPlus ANODES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.