BROWSE

Related Researcher

Author

Lee, Sang-Young
Energy Soft-Materials Lab (ESML)
Research Interests
  • Soft Materials for Energy Storage/ Conversion Systems

ITEM VIEW & DOWNLOAD

Direct ultraviolet-assisted conformal coating of nanometer-thick poly(tris(2-(acryloyloxy)ethyl) phosphate) gel polymer electrolytes on high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes

Cited 1 times inthomson ciCited 2 times inthomson ci
Title
Direct ultraviolet-assisted conformal coating of nanometer-thick poly(tris(2-(acryloyloxy)ethyl) phosphate) gel polymer electrolytes on high-voltage LiNi1/3Co1/3Mn1/3O2 cathodes
Author
Lee, Eun-HoPark, Jang-HoonCho, Ju-HyunCho, Sung-JuKim, Dong WookDan, HeKang, YongkuLee, Sang-Young
Keywords
High-voltage cathodes; Ion-conductive protective layers; Lithium-ion batteries; Poly(tris(2-(acryloyloxy)ethyl) phosphate); Surface modification; Ultraviolet-assisted conformal coating
Issue Date
201312
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF POWER SOURCES, v.244, no., pp.389 - 394
Abstract
As a facile and scalable approach to the surface modification of high-voltage cathode materials for lithium-ion batteries, direct UV-assisted conformal coating of poly(tris(2-(acryloyloxy)ethyl) phosphate) (PTAEP) gel polymer electrolyte on as-formed LiNi1/3Co1/3Mn1/3O2 (NCM) cathode is presented. The smooth and continuous PTAEP coating layer with nanometer-thickness (similar to 20 nm) is successfully introduced on the NCM surface without impairing electronic/ionic conduction pathways preformed in the NCM cathode. Owing to this structural uniqueness, the PTAEP-coated NCM cathode significantly improves the high-voltage (4.6 V) cycling performance and mitigates the exothermic reaction between the delithiated NCM and liquid electrolyte. This demonstrates that the conformal PTAEP nanocoating layer proposed herein, which is completely different from conventional inorganic material-based coating layers, acts as a new ion-conductive protective film that effectively suppresses unwanted interfacial side reactions between the high-voltage cathode materials and liquid electrolyte.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.jpowsour.2012.12.049
ISSN
0378-7753
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU