File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이상영

Lee, Sang-Young
Energy Soft-Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 425 -
dc.citation.number 4 -
dc.citation.startPage 420 -
dc.citation.title MACROMOLECULAR CHEMISTRY AND PHYSICS -
dc.citation.volume 211 -
dc.contributor.author Jeong, Hyun-Seok -
dc.contributor.author Noh, Jin Hee -
dc.contributor.author Hwang, Chu-Gyun -
dc.contributor.author Kim, Sang Ho -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-22T07:13:52Z -
dc.date.available 2023-12-22T07:13:52Z -
dc.date.created 2014-09-17 -
dc.date.issued 2010-02 -
dc.description.abstract As a new approach to improve the thermal stability of separator membranes crucially affecting the internal short-circuit failures of lithium-ion batteries, we develop a new composite separator membrane. The composite separator membrane is prepared by introducing microporous composite coating layers onto both sides of a polyethylene (PE) separator membrane. The composite coating layers consist of silica (SiO2) nanoparticles and gel-type polymer electrolytes (PVdF-HFP, polyvinylidene fluoride-hexafluoropropylene). The microporous morphology of composite coating layers is determined by controlling the phase inversion, more specifically the solvent-nonsolvent miscibility in the coating solutions. To induce the phase inversion, three different nonsolvents are chosen in the decreasing order of solubility parameter (d) difference against the solvent (acetone, δ=20 MPa1/2); the nonsolvents are water (δ=48 MPa1/2), ethanol (δ=26 MPa1/2), and isopropyl alcohol (δ=24 MPa1/2). The microporous structure of composite coating layers becomes more developed with the increase of not only the nonsolvent content, but also the solubility parameter difference between acetone and the nonsolvent. Based on this understanding of the phase inversion, the influence of the morphological variation on the thermal shrinkage and electrochemical performance of the composite separator membranes is quantitatively identified. -
dc.identifier.bibliographicCitation MACROMOLECULAR CHEMISTRY AND PHYSICS, v.211, no.4, pp.420 - 425 -
dc.identifier.doi 10.1002/macp.200900490 -
dc.identifier.issn 1022-1352 -
dc.identifier.scopusid 2-s2.0-77449115914 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/6189 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77449115914 -
dc.identifier.wosid 000275590700005 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Effect of Solvent-Nonsolvent Miscibility on Morphology and Electrochemical Performance of SiO2/PVdF-HFP-Based Composite Separator Membranes for Safer Lithium-Ion Batteries -
dc.type Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.