BROWSE

Related Researcher

Author

Lee, Sang-Young
Energy Soft-Materials Lab (ESML)
Research Interests
  • Soft Materials for Energy Storage/ Conversion Systems

ITEM VIEW & DOWNLOAD

Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries

Cited 15 times inthomson ciCited 14 times inthomson ci
Title
Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries
Author
Lee, Jung-RanWon, Ji-HyeKim, Jong HunKim, Ki JaeLee, Sang-Young
Keywords
Colloidal silica particles; Evaporation-induced self-assembly; High-safety/high-rate; Lithium-ion batteries; Nanoporous structure; Nonwoven composite separators
Issue Date
201210
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF POWER SOURCES, v.216, no., pp.42 - 47
Abstract
A facile approach to the fabrication of nanoporous structure-tuned nonwoven composite separators is demonstrated for application in high-safety/high-rate lithium-ion batteries. This strategy is based on the construction of silica (SiO 2) colloidal particle-assisted nanoporous structure in a poly(ethylene terephthalate) (PET) nonwoven substrate. The nanoparticle arrangement arising from evaporation-induced self-assembly of SiO 2 colloidal particles allows the evolution of the unusual nanoporous structure, i.e. well-connected interstitial voids formed between close-packed SiO 2 particles adhered by styrene-butadiene rubber (SBR) binders. Meanwhile, the PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The aforementioned structural novelty of the nonwoven composite separator plays a key role in providing the separator with advantageous characteristics (specifically, good electrolyte wettability, high ionic conductivity, and benign compatibility with electrodes), which leads to the better cell performance than a commercialized polyethylene (PE) separator.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.jpowsour.2012.05.052
ISSN
0378-7753
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU