File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이상영

Lee, Sang-Young
Energy Soft-Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 8198 -
dc.citation.number 22 -
dc.citation.startPage 8192 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY -
dc.citation.volume 21 -
dc.contributor.author Cho, Ju-Hyun -
dc.contributor.author Park, Jang-Hoon -
dc.contributor.author Kim, Jong Hun -
dc.contributor.author Lee, Sang-Young -
dc.date.accessioned 2023-12-22T06:38:07Z -
dc.date.available 2023-12-22T06:38:07Z -
dc.date.created 2014-09-17 -
dc.date.issued 2011 -
dc.description.abstract Highly-ordered nanoparticle arrangements have drawn substantial attention as an ideal starting template for the preparation of micro- and nanostructured porous materials. In the present study, by exploiting the concept of these unusual colloidal structures, we demonstrate facile fabrication of novel nanoporous composite separator membranes for high-safety and high-power lithium-ion batteries. This is based on the introduction of close-packed poly(methyl methacrylate) (PMMA) colloidal particle arrays to a poly(ethylene terephthalate) (PET) nonwoven support. Herein, the nanoparticle arrangement, driven by the self-assembly of PMMA colloidal particles provides a highly-ordered nanoporous structure, i.e. well-connected interstitial voids formed between the close-packed PMMA nanoparticles, in the composite separator membrane. The nonwoven PET serves as a mechanical support to mitigate the thermal shrinkage of the nonwoven composite separator membrane. Performance benefits of the nonwoven composite separator membrane, as compared to a commercialized polyethylene (PE) separator membrane, are elucidated in terms of thermal shrinkage, liquid electrolyte wettability, and ionic transport. Based on comprehensive characterization of the nonwoven composite separator membrane, the effect of the nanoporous structure on the electrochemical performance, such as self-discharge, discharge capacity, discharge C-rate capability, and cyclability of cells is investigated. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY, v.21, no.22, pp.8192 - 8198 -
dc.identifier.doi 10.1039/c0jm04340k -
dc.identifier.issn 0959-9428 -
dc.identifier.scopusid 2-s2.0-79957482264 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/6151 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79957482264 -
dc.identifier.wosid 000290912900048 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries: poly(methyl methacrylate) colloidal particles-embedded nonwoven poly(ethylene terephthalate) -
dc.type Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.