BROWSE

Related Researcher

Author

Lee, Sang-Young
Energy Soft-Materials Lab (ESML)
Research Interests
  • Soft Materials for Energy Storage/ Conversion Systems

ITEM VIEW & DOWNLOAD

Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture

Cited 18 times inthomson ciCited 16 times inthomson ci
Title
Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture
Author
Jeong, Hyun-SeokChoi, Eun-SunLee, Sang-YoungKim, Jong Hun
Keywords
High-voltage/high-rate; Interstitial voids; Lithium-ion batteries; Polyethylene terephthalate nonwoven; Separator membranes; Silica
Issue Date
201210
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF MEMBRANE SCIENCE, v.415, no., pp.513 - 519
Abstract
Evaporation-induced, close-packed silica (SiO 2) nanoparticle-embedded polyethylene terephthalate (PET) nonwoven composite separator membranes (hereinafter, referred to as "NW-separators") are fabricated for application in high-voltage/high-rate lithium-ion batteries. The heat-resistant PET nonwoven is employed as a physical support to suppress thermal shrinkage of the NW-separator. A distinctive characteristic of the NW-separator is the well-connected interstitial voids formed between compactly packed SiO 2 nanoparticles adhered by polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) binders. This allows for the evolution of highly percolated, electrolyte-philic microporous architecture in the NW-separator. In comparison to a commercialized polyethylene (PE) separator, the NW-separator featuring the aforementioned structural uniqueness exhibits substantial improvements in porosity, air permeability, and electrolyte wettability, which contribute to the facile ionic transport and retarded growth of cell impedance during cycling. As a result, superior cell performance is obtained in the NW-separator. Notably, this advantageous effect of the NW-separator on cell performance becomes more pronounced at challenging charge/discharge conditions of high voltages (herein, 4.4V) and high current densities.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.memsci.2012.05.038
ISSN
0376-7388
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU