File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

류정기

Ryu, Jungki
Bioinspired Functional Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Biocatalytic Photosynthesis with Water as an Electron Donor

Author(s)
Ryu, JungkiNam, Dong HeonLee, Sahng HaPark, Chan Beum
Issued Date
2014-09
DOI
10.1002/chem.201403301
URI
https://scholarworks.unist.ac.kr/handle/201301/6021
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84905316727
Citation
CHEMISTRY-A EUROPEAN JOURNAL, v.20, no.38, pp.12020 - 12025
Abstract
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever-increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh-based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L-glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
0947-6539

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.