BROWSE

Related Researcher

Author

Baek, Jong-Beom
Center for Dimension-Controllable Organic Frameworks
Research Interests
  • Covalent Organic Frameworks (COFs), Carbon Nanotubes(CNTs), graphene, Energy Conversion and Storage

ITEM VIEW & DOWNLOAD

Grafting of vapor-grown carbon nanofibers (VGCNF) with a hyperbranched poly (ether-ketone)

Cited 13 times inthomson ciCited 14 times inthomson ci
Title
Grafting of vapor-grown carbon nanofibers (VGCNF) with a hyperbranched poly (ether-ketone)
Author
Wang, D.H.Baek, Jong-BeomTan, L.-S.
Keywords
Acidic medium; Carbon nanofibers; Polycondensation; Polyetherketones
Issue Date
200607
Publisher
ELSEVIER SCIENCE SA
Citation
MATERIALS SCIENCE & ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, v.132, no.1-2, pp.103 - 107
Abstract
An in-situ polymerization of an A2B monomer, 5-phenoxyisophthalic acid, in the presence of various amounts (5, 10 and 20 wt%) of vapor-grown carbon nanofibers (VGCNF) was carried out in poly(phosphoric acid)/phosphorus pentoxide (PPA/P2O5; 1:4, w/w) medium. 5-Phenoxyisophthalic acid polymerizes via Friedel-Crafts acylation in PPA to form a CO2H-terminated hyperbranched poly(ether-ketone) or HPB-PEK. The resulting (HPB-PEK)-g-VGCNF composites were not soluble in dichlorobenzene or toluene, but also showed significant solubility in polar solvents such as NMP, DMF, DMAC, ethanol, and significantly higher solubility in ethanol/triethylamine mixture or in aqueous ammonia solution, apparently stemming from the ionization of the numerous surface CO2H groups. This is in contrast to the nanocomposites derived from VGCNF grafted with a linear meta-poly(ether-ketone), mPEK, with 1-10 wt% VGCNF content that have much lower solubility in these polar solvents but are more soluble in methanesulfonic acid [J.-B. Baek, C.B. Lyons, L.-S. Tan, Macromolecules 37 (2004) 8278]. The overall evidence based on the data from elemental analysis, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR) as well as scanning electron microscopy of the resulting materials implicates that under our reaction conditions, HPB-PEK was grafted to the surfaces of VGCNF resulting in the formation of highly coated nanofibers. TGA data also support that VGCNF has remained more or less structurally intact under the mildly acidic, relatively high-shearing and hot polymerization conditions.
URI
Go to Link
DOI
http://dx.doi.org/10.1016/j.mseb.2006.02.039
ISSN
0921-5107
Appears in Collections:
ECHE_Journal Papers

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qr_code

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU