File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권영국

Kwon, Youngkook
Electrochemistry Lab for Energy and Environment
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 10983 -
dc.citation.number 17 -
dc.citation.startPage 10973 -
dc.citation.title ACS CATALYSIS -
dc.citation.volume 12 -
dc.contributor.author Patra, Kshirodra Kumar -
dc.contributor.author Liu, Zhu -
dc.contributor.author Lee, Hojeong -
dc.contributor.author Hong, Seungwon -
dc.contributor.author Song, Hakhyeon -
dc.contributor.author Abbas, Hafiz Ghulam -
dc.contributor.author Kwon, Youngkook -
dc.contributor.author Ringe, Stefan -
dc.contributor.author Oh, Jihun -
dc.date.accessioned 2023-12-21T13:41:40Z -
dc.date.available 2023-12-21T13:41:40Z -
dc.date.created 2022-09-16 -
dc.date.issued 2022-09 -
dc.description.abstract Metal oxides are a promising material for designing highly active and selective catalysts for the electrochemical reduction of carbon dioxide (CO2RR). Here, we designed a Cu/ceria catalyst with high selectivity of methane production at single-atomic Cu active sites. Using this, we report favorable design concepts that push the product selectivity of methane formation by combining detailed structural analysis, density functional theory (DFT), in situ Raman spectroscopy, and electrochemical measurements. We demonstrate that a higher concentration of oxygen vacancies on the catalyst surface, resulting from more available Cu+ sites, enables high selectivity for methane formation during CO2RR and can be controlled by the calcination temperature. The DFT calculation and in situ Raman studies indicate that pH controls the surface termination; a more alkaline pH generates hydroxylated surface motifs with more active sites for the hydrogen evolution reaction. These findings provide insights into designing an efficient metal oxide electrocatalyst by controlling the atomic structure via the reaction environment and synthesis conditions. -
dc.identifier.bibliographicCitation ACS CATALYSIS, v.12, no.17, pp.10973 - 10983 -
dc.identifier.doi 10.1021/acscatal.2c02669 -
dc.identifier.issn 2155-5435 -
dc.identifier.scopusid 2-s2.0-85137300318 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/59321 -
dc.identifier.wosid 000848076900001 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Boosting Electrochemical CO2 Reduction to Methane via Tuning Oxygen Vacancy Concentration and Surface Termination on a Copper/Ceria Catalyst -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor copper-ceria -
dc.subject.keywordAuthor electrochemical CO2 reduction -
dc.subject.keywordAuthor oxygen vacancy -
dc.subject.keywordAuthor methane production -
dc.subject.keywordAuthor gas diffusion electrode -
dc.subject.keywordAuthor electrolyte pH -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus ELECTROREDUCTION -
dc.subject.keywordPlus CERIA -
dc.subject.keywordPlus CU -
dc.subject.keywordPlus CO(2)REDUCTION -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus INSIGHTS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.